function getDefaultExportFromCjs (x) { return x && x.__esModule && Object.prototype.hasOwnProperty.call(x, 'default') ? x['default'] : x; } var urlToolkit = {exports: {}}; (function (module, exports) { // see https://tools.ietf.org/html/rfc1808 (function (root) { var URL_REGEX = /^(?=((?:[a-zA-Z0-9+\-.]+:)?))\1(?=((?:\/\/[^\/?#]*)?))\2(?=((?:(?:[^?#\/]*\/)*[^;?#\/]*)?))\3((?:;[^?#]*)?)(\?[^#]*)?(#[^]*)?$/; var FIRST_SEGMENT_REGEX = /^(?=([^\/?#]*))\1([^]*)$/; var SLASH_DOT_REGEX = /(?:\/|^)\.(?=\/)/g; var SLASH_DOT_DOT_REGEX = /(?:\/|^)\.\.\/(?!\.\.\/)[^\/]*(?=\/)/g; var URLToolkit = { // If opts.alwaysNormalize is true then the path will always be normalized even when it starts with / or // // E.g // With opts.alwaysNormalize = false (default, spec compliant) // http://a.com/b/cd + /e/f/../g => http://a.com/e/f/../g // With opts.alwaysNormalize = true (not spec compliant) // http://a.com/b/cd + /e/f/../g => http://a.com/e/g buildAbsoluteURL: function (baseURL, relativeURL, opts) { opts = opts || {}; // remove any remaining space and CRLF baseURL = baseURL.trim(); relativeURL = relativeURL.trim(); if (!relativeURL) { // 2a) If the embedded URL is entirely empty, it inherits the // entire base URL (i.e., is set equal to the base URL) // and we are done. if (!opts.alwaysNormalize) { return baseURL; } var basePartsForNormalise = URLToolkit.parseURL(baseURL); if (!basePartsForNormalise) { throw new Error('Error trying to parse base URL.'); } basePartsForNormalise.path = URLToolkit.normalizePath( basePartsForNormalise.path ); return URLToolkit.buildURLFromParts(basePartsForNormalise); } var relativeParts = URLToolkit.parseURL(relativeURL); if (!relativeParts) { throw new Error('Error trying to parse relative URL.'); } if (relativeParts.scheme) { // 2b) If the embedded URL starts with a scheme name, it is // interpreted as an absolute URL and we are done. if (!opts.alwaysNormalize) { return relativeURL; } relativeParts.path = URLToolkit.normalizePath(relativeParts.path); return URLToolkit.buildURLFromParts(relativeParts); } var baseParts = URLToolkit.parseURL(baseURL); if (!baseParts) { throw new Error('Error trying to parse base URL.'); } if (!baseParts.netLoc && baseParts.path && baseParts.path[0] !== '/') { // If netLoc missing and path doesn't start with '/', assume everthing before the first '/' is the netLoc // This causes 'example.com/a' to be handled as '//example.com/a' instead of '/example.com/a' var pathParts = FIRST_SEGMENT_REGEX.exec(baseParts.path); baseParts.netLoc = pathParts[1]; baseParts.path = pathParts[2]; } if (baseParts.netLoc && !baseParts.path) { baseParts.path = '/'; } var builtParts = { // 2c) Otherwise, the embedded URL inherits the scheme of // the base URL. scheme: baseParts.scheme, netLoc: relativeParts.netLoc, path: null, params: relativeParts.params, query: relativeParts.query, fragment: relativeParts.fragment, }; if (!relativeParts.netLoc) { // 3) If the embedded URL's is non-empty, we skip to // Step 7. Otherwise, the embedded URL inherits the // (if any) of the base URL. builtParts.netLoc = baseParts.netLoc; // 4) If the embedded URL path is preceded by a slash "/", the // path is not relative and we skip to Step 7. if (relativeParts.path[0] !== '/') { if (!relativeParts.path) { // 5) If the embedded URL path is empty (and not preceded by a // slash), then the embedded URL inherits the base URL path builtParts.path = baseParts.path; // 5a) if the embedded URL's is non-empty, we skip to // step 7; otherwise, it inherits the of the base // URL (if any) and if (!relativeParts.params) { builtParts.params = baseParts.params; // 5b) if the embedded URL's is non-empty, we skip to // step 7; otherwise, it inherits the of the base // URL (if any) and we skip to step 7. if (!relativeParts.query) { builtParts.query = baseParts.query; } } } else { // 6) The last segment of the base URL's path (anything // following the rightmost slash "/", or the entire path if no // slash is present) is removed and the embedded URL's path is // appended in its place. var baseURLPath = baseParts.path; var newPath = baseURLPath.substring(0, baseURLPath.lastIndexOf('/') + 1) + relativeParts.path; builtParts.path = URLToolkit.normalizePath(newPath); } } } if (builtParts.path === null) { builtParts.path = opts.alwaysNormalize ? URLToolkit.normalizePath(relativeParts.path) : relativeParts.path; } return URLToolkit.buildURLFromParts(builtParts); }, parseURL: function (url) { var parts = URL_REGEX.exec(url); if (!parts) { return null; } return { scheme: parts[1] || '', netLoc: parts[2] || '', path: parts[3] || '', params: parts[4] || '', query: parts[5] || '', fragment: parts[6] || '', }; }, normalizePath: function (path) { // The following operations are // then applied, in order, to the new path: // 6a) All occurrences of "./", where "." is a complete path // segment, are removed. // 6b) If the path ends with "." as a complete path segment, // that "." is removed. path = path.split('').reverse().join('').replace(SLASH_DOT_REGEX, ''); // 6c) All occurrences of "/../", where is a // complete path segment not equal to "..", are removed. // Removal of these path segments is performed iteratively, // removing the leftmost matching pattern on each iteration, // until no matching pattern remains. // 6d) If the path ends with "/..", where is a // complete path segment not equal to "..", that // "/.." is removed. while ( path.length !== (path = path.replace(SLASH_DOT_DOT_REGEX, '')).length ) {} return path.split('').reverse().join(''); }, buildURLFromParts: function (parts) { return ( parts.scheme + parts.netLoc + parts.path + parts.params + parts.query + parts.fragment ); }, }; module.exports = URLToolkit; })(); } (urlToolkit)); var urlToolkitExports = urlToolkit.exports; function ownKeys(e, r) { var t = Object.keys(e); if (Object.getOwnPropertySymbols) { var o = Object.getOwnPropertySymbols(e); r && (o = o.filter(function (r) { return Object.getOwnPropertyDescriptor(e, r).enumerable; })), t.push.apply(t, o); } return t; } function _objectSpread2(e) { for (var r = 1; r < arguments.length; r++) { var t = null != arguments[r] ? arguments[r] : {}; r % 2 ? ownKeys(Object(t), !0).forEach(function (r) { _defineProperty(e, r, t[r]); }) : Object.getOwnPropertyDescriptors ? Object.defineProperties(e, Object.getOwnPropertyDescriptors(t)) : ownKeys(Object(t)).forEach(function (r) { Object.defineProperty(e, r, Object.getOwnPropertyDescriptor(t, r)); }); } return e; } function _toPrimitive(t, r) { if ("object" != typeof t || !t) return t; var e = t[Symbol.toPrimitive]; if (void 0 !== e) { var i = e.call(t, r || "default"); if ("object" != typeof i) return i; throw new TypeError("@@toPrimitive must return a primitive value."); } return ("string" === r ? String : Number)(t); } function _toPropertyKey(t) { var i = _toPrimitive(t, "string"); return "symbol" == typeof i ? i : String(i); } function _defineProperty(obj, key, value) { key = _toPropertyKey(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } function _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); } // https://caniuse.com/mdn-javascript_builtins_number_isfinite const isFiniteNumber = Number.isFinite || function (value) { return typeof value === 'number' && isFinite(value); }; // https://caniuse.com/mdn-javascript_builtins_number_issafeinteger const isSafeInteger = Number.isSafeInteger || function (value) { return typeof value === 'number' && Math.abs(value) <= MAX_SAFE_INTEGER; }; const MAX_SAFE_INTEGER = Number.MAX_SAFE_INTEGER || 9007199254740991; let Events = /*#__PURE__*/function (Events) { Events["MEDIA_ATTACHING"] = "hlsMediaAttaching"; Events["MEDIA_ATTACHED"] = "hlsMediaAttached"; Events["MEDIA_DETACHING"] = "hlsMediaDetaching"; Events["MEDIA_DETACHED"] = "hlsMediaDetached"; Events["MEDIA_ENDED"] = "hlsMediaEnded"; Events["BUFFER_RESET"] = "hlsBufferReset"; Events["BUFFER_CODECS"] = "hlsBufferCodecs"; Events["BUFFER_CREATED"] = "hlsBufferCreated"; Events["BUFFER_APPENDING"] = "hlsBufferAppending"; Events["BUFFER_APPENDED"] = "hlsBufferAppended"; Events["BUFFER_EOS"] = "hlsBufferEos"; Events["BUFFER_FLUSHING"] = "hlsBufferFlushing"; Events["BUFFER_FLUSHED"] = "hlsBufferFlushed"; Events["MANIFEST_LOADING"] = "hlsManifestLoading"; Events["MANIFEST_LOADED"] = "hlsManifestLoaded"; Events["MANIFEST_PARSED"] = "hlsManifestParsed"; Events["LEVEL_SWITCHING"] = "hlsLevelSwitching"; Events["LEVEL_SWITCHED"] = "hlsLevelSwitched"; Events["LEVEL_LOADING"] = "hlsLevelLoading"; Events["LEVEL_LOADED"] = "hlsLevelLoaded"; Events["LEVEL_UPDATED"] = "hlsLevelUpdated"; Events["LEVEL_PTS_UPDATED"] = "hlsLevelPtsUpdated"; Events["LEVELS_UPDATED"] = "hlsLevelsUpdated"; Events["AUDIO_TRACKS_UPDATED"] = "hlsAudioTracksUpdated"; Events["AUDIO_TRACK_SWITCHING"] = "hlsAudioTrackSwitching"; Events["AUDIO_TRACK_SWITCHED"] = "hlsAudioTrackSwitched"; Events["AUDIO_TRACK_LOADING"] = "hlsAudioTrackLoading"; Events["AUDIO_TRACK_LOADED"] = "hlsAudioTrackLoaded"; Events["SUBTITLE_TRACKS_UPDATED"] = "hlsSubtitleTracksUpdated"; Events["SUBTITLE_TRACKS_CLEARED"] = "hlsSubtitleTracksCleared"; Events["SUBTITLE_TRACK_SWITCH"] = "hlsSubtitleTrackSwitch"; Events["SUBTITLE_TRACK_LOADING"] = "hlsSubtitleTrackLoading"; Events["SUBTITLE_TRACK_LOADED"] = "hlsSubtitleTrackLoaded"; Events["SUBTITLE_FRAG_PROCESSED"] = "hlsSubtitleFragProcessed"; Events["CUES_PARSED"] = "hlsCuesParsed"; Events["NON_NATIVE_TEXT_TRACKS_FOUND"] = "hlsNonNativeTextTracksFound"; Events["INIT_PTS_FOUND"] = "hlsInitPtsFound"; Events["FRAG_LOADING"] = "hlsFragLoading"; Events["FRAG_LOAD_EMERGENCY_ABORTED"] = "hlsFragLoadEmergencyAborted"; Events["FRAG_LOADED"] = "hlsFragLoaded"; Events["FRAG_DECRYPTED"] = "hlsFragDecrypted"; Events["FRAG_PARSING_INIT_SEGMENT"] = "hlsFragParsingInitSegment"; Events["FRAG_PARSING_USERDATA"] = "hlsFragParsingUserdata"; Events["FRAG_PARSING_METADATA"] = "hlsFragParsingMetadata"; Events["FRAG_PARSED"] = "hlsFragParsed"; Events["FRAG_BUFFERED"] = "hlsFragBuffered"; Events["FRAG_CHANGED"] = "hlsFragChanged"; Events["FPS_DROP"] = "hlsFpsDrop"; Events["FPS_DROP_LEVEL_CAPPING"] = "hlsFpsDropLevelCapping"; Events["MAX_AUTO_LEVEL_UPDATED"] = "hlsMaxAutoLevelUpdated"; Events["ERROR"] = "hlsError"; Events["DESTROYING"] = "hlsDestroying"; Events["KEY_LOADING"] = "hlsKeyLoading"; Events["KEY_LOADED"] = "hlsKeyLoaded"; Events["LIVE_BACK_BUFFER_REACHED"] = "hlsLiveBackBufferReached"; Events["BACK_BUFFER_REACHED"] = "hlsBackBufferReached"; Events["STEERING_MANIFEST_LOADED"] = "hlsSteeringManifestLoaded"; return Events; }({}); /** * Defines each Event type and payload by Event name. Used in {@link hls.js#HlsEventEmitter} to strongly type the event listener API. */ let ErrorTypes = /*#__PURE__*/function (ErrorTypes) { ErrorTypes["NETWORK_ERROR"] = "networkError"; ErrorTypes["MEDIA_ERROR"] = "mediaError"; ErrorTypes["KEY_SYSTEM_ERROR"] = "keySystemError"; ErrorTypes["MUX_ERROR"] = "muxError"; ErrorTypes["OTHER_ERROR"] = "otherError"; return ErrorTypes; }({}); let ErrorDetails = /*#__PURE__*/function (ErrorDetails) { ErrorDetails["KEY_SYSTEM_NO_KEYS"] = "keySystemNoKeys"; ErrorDetails["KEY_SYSTEM_NO_ACCESS"] = "keySystemNoAccess"; ErrorDetails["KEY_SYSTEM_NO_SESSION"] = "keySystemNoSession"; ErrorDetails["KEY_SYSTEM_NO_CONFIGURED_LICENSE"] = "keySystemNoConfiguredLicense"; ErrorDetails["KEY_SYSTEM_LICENSE_REQUEST_FAILED"] = "keySystemLicenseRequestFailed"; ErrorDetails["KEY_SYSTEM_SERVER_CERTIFICATE_REQUEST_FAILED"] = "keySystemServerCertificateRequestFailed"; ErrorDetails["KEY_SYSTEM_SERVER_CERTIFICATE_UPDATE_FAILED"] = "keySystemServerCertificateUpdateFailed"; ErrorDetails["KEY_SYSTEM_SESSION_UPDATE_FAILED"] = "keySystemSessionUpdateFailed"; ErrorDetails["KEY_SYSTEM_STATUS_OUTPUT_RESTRICTED"] = "keySystemStatusOutputRestricted"; ErrorDetails["KEY_SYSTEM_STATUS_INTERNAL_ERROR"] = "keySystemStatusInternalError"; ErrorDetails["MANIFEST_LOAD_ERROR"] = "manifestLoadError"; ErrorDetails["MANIFEST_LOAD_TIMEOUT"] = "manifestLoadTimeOut"; ErrorDetails["MANIFEST_PARSING_ERROR"] = "manifestParsingError"; ErrorDetails["MANIFEST_INCOMPATIBLE_CODECS_ERROR"] = "manifestIncompatibleCodecsError"; ErrorDetails["LEVEL_EMPTY_ERROR"] = "levelEmptyError"; ErrorDetails["LEVEL_LOAD_ERROR"] = "levelLoadError"; ErrorDetails["LEVEL_LOAD_TIMEOUT"] = "levelLoadTimeOut"; ErrorDetails["LEVEL_PARSING_ERROR"] = "levelParsingError"; ErrorDetails["LEVEL_SWITCH_ERROR"] = "levelSwitchError"; ErrorDetails["AUDIO_TRACK_LOAD_ERROR"] = "audioTrackLoadError"; ErrorDetails["AUDIO_TRACK_LOAD_TIMEOUT"] = "audioTrackLoadTimeOut"; ErrorDetails["SUBTITLE_LOAD_ERROR"] = "subtitleTrackLoadError"; ErrorDetails["SUBTITLE_TRACK_LOAD_TIMEOUT"] = "subtitleTrackLoadTimeOut"; ErrorDetails["FRAG_LOAD_ERROR"] = "fragLoadError"; ErrorDetails["FRAG_LOAD_TIMEOUT"] = "fragLoadTimeOut"; ErrorDetails["FRAG_DECRYPT_ERROR"] = "fragDecryptError"; ErrorDetails["FRAG_PARSING_ERROR"] = "fragParsingError"; ErrorDetails["FRAG_GAP"] = "fragGap"; ErrorDetails["REMUX_ALLOC_ERROR"] = "remuxAllocError"; ErrorDetails["KEY_LOAD_ERROR"] = "keyLoadError"; ErrorDetails["KEY_LOAD_TIMEOUT"] = "keyLoadTimeOut"; ErrorDetails["BUFFER_ADD_CODEC_ERROR"] = "bufferAddCodecError"; ErrorDetails["BUFFER_INCOMPATIBLE_CODECS_ERROR"] = "bufferIncompatibleCodecsError"; ErrorDetails["BUFFER_APPEND_ERROR"] = "bufferAppendError"; ErrorDetails["BUFFER_APPENDING_ERROR"] = "bufferAppendingError"; ErrorDetails["BUFFER_STALLED_ERROR"] = "bufferStalledError"; ErrorDetails["BUFFER_FULL_ERROR"] = "bufferFullError"; ErrorDetails["BUFFER_SEEK_OVER_HOLE"] = "bufferSeekOverHole"; ErrorDetails["BUFFER_NUDGE_ON_STALL"] = "bufferNudgeOnStall"; ErrorDetails["INTERNAL_EXCEPTION"] = "internalException"; ErrorDetails["INTERNAL_ABORTED"] = "aborted"; ErrorDetails["UNKNOWN"] = "unknown"; return ErrorDetails; }({}); class Logger { constructor(label, logger) { this.trace = void 0; this.debug = void 0; this.log = void 0; this.warn = void 0; this.info = void 0; this.error = void 0; const lb = `[${label}]:`; this.trace = noop; this.debug = logger.debug.bind(null, lb); this.log = logger.log.bind(null, lb); this.warn = logger.warn.bind(null, lb); this.info = logger.info.bind(null, lb); this.error = logger.error.bind(null, lb); } } const noop = function noop() {}; const fakeLogger = { trace: noop, debug: noop, log: noop, warn: noop, info: noop, error: noop }; function createLogger() { return _extends({}, fakeLogger); } // let lastCallTime; // function formatMsgWithTimeInfo(type, msg) { // const now = Date.now(); // const diff = lastCallTime ? '+' + (now - lastCallTime) : '0'; // lastCallTime = now; // msg = (new Date(now)).toISOString() + ' | [' + type + '] > ' + msg + ' ( ' + diff + ' ms )'; // return msg; // } function consolePrintFn(type, id) { const func = self.console[type]; return func ? func.bind(self.console, `${id ? '[' + id + '] ' : ''}[${type}] >`) : noop; } function getLoggerFn(key, debugConfig, id) { return debugConfig[key] ? debugConfig[key].bind(debugConfig) : consolePrintFn(key, id); } let exportedLogger = createLogger(); function enableLogs(debugConfig, context, id) { // check that console is available const newLogger = createLogger(); if (typeof console === 'object' && debugConfig === true || typeof debugConfig === 'object') { const keys = [ // Remove out from list here to hard-disable a log-level // 'trace', 'debug', 'log', 'info', 'warn', 'error']; keys.forEach(key => { newLogger[key] = getLoggerFn(key, debugConfig, id); }); // Some browsers don't allow to use bind on console object anyway // fallback to default if needed try { newLogger.log(`Debug logs enabled for "${context}" in hls.js version ${"1.5.2-0.canary.9947"}`); } catch (e) { /* log fn threw an exception. All logger methods are no-ops. */ return createLogger(); } } exportedLogger = newLogger; return newLogger; } const logger = exportedLogger; const DECIMAL_RESOLUTION_REGEX = /^(\d+)x(\d+)$/; const ATTR_LIST_REGEX = /(.+?)=(".*?"|.*?)(?:,|$)/g; // adapted from https://github.com/kanongil/node-m3u8parse/blob/master/attrlist.js class AttrList { constructor(attrs) { if (typeof attrs === 'string') { attrs = AttrList.parseAttrList(attrs); } _extends(this, attrs); } get clientAttrs() { return Object.keys(this).filter(attr => attr.substring(0, 2) === 'X-'); } decimalInteger(attrName) { const intValue = parseInt(this[attrName], 10); if (intValue > Number.MAX_SAFE_INTEGER) { return Infinity; } return intValue; } hexadecimalInteger(attrName) { if (this[attrName]) { let stringValue = (this[attrName] || '0x').slice(2); stringValue = (stringValue.length & 1 ? '0' : '') + stringValue; const value = new Uint8Array(stringValue.length / 2); for (let i = 0; i < stringValue.length / 2; i++) { value[i] = parseInt(stringValue.slice(i * 2, i * 2 + 2), 16); } return value; } else { return null; } } hexadecimalIntegerAsNumber(attrName) { const intValue = parseInt(this[attrName], 16); if (intValue > Number.MAX_SAFE_INTEGER) { return Infinity; } return intValue; } decimalFloatingPoint(attrName) { return parseFloat(this[attrName]); } optionalFloat(attrName, defaultValue) { const value = this[attrName]; return value ? parseFloat(value) : defaultValue; } enumeratedString(attrName) { return this[attrName]; } bool(attrName) { return this[attrName] === 'YES'; } decimalResolution(attrName) { const res = DECIMAL_RESOLUTION_REGEX.exec(this[attrName]); if (res === null) { return undefined; } return { width: parseInt(res[1], 10), height: parseInt(res[2], 10) }; } static parseAttrList(input) { let match; const attrs = {}; const quote = '"'; ATTR_LIST_REGEX.lastIndex = 0; while ((match = ATTR_LIST_REGEX.exec(input)) !== null) { let value = match[2]; if (value.indexOf(quote) === 0 && value.lastIndexOf(quote) === value.length - 1) { value = value.slice(1, -1); } const name = match[1].trim(); attrs[name] = value; } return attrs; } } // Avoid exporting const enum so that these values can be inlined function isDateRangeCueAttribute(attrName) { return attrName !== "ID" && attrName !== "CLASS" && attrName !== "START-DATE" && attrName !== "DURATION" && attrName !== "END-DATE" && attrName !== "END-ON-NEXT"; } function isSCTE35Attribute(attrName) { return attrName === "SCTE35-OUT" || attrName === "SCTE35-IN"; } class DateRange { constructor(dateRangeAttr, dateRangeWithSameId) { this.attr = void 0; this._startDate = void 0; this._endDate = void 0; this._badValueForSameId = void 0; if (dateRangeWithSameId) { const previousAttr = dateRangeWithSameId.attr; for (const key in previousAttr) { if (Object.prototype.hasOwnProperty.call(dateRangeAttr, key) && dateRangeAttr[key] !== previousAttr[key]) { logger.warn(`DATERANGE tag attribute: "${key}" does not match for tags with ID: "${dateRangeAttr.ID}"`); this._badValueForSameId = key; break; } } // Merge DateRange tags with the same ID dateRangeAttr = _extends(new AttrList({}), previousAttr, dateRangeAttr); } this.attr = dateRangeAttr; this._startDate = new Date(dateRangeAttr["START-DATE"]); if ("END-DATE" in this.attr) { const endDate = new Date(this.attr["END-DATE"]); if (isFiniteNumber(endDate.getTime())) { this._endDate = endDate; } } } get id() { return this.attr.ID; } get class() { return this.attr.CLASS; } get startDate() { return this._startDate; } get endDate() { if (this._endDate) { return this._endDate; } const duration = this.duration; if (duration !== null) { return new Date(this._startDate.getTime() + duration * 1000); } return null; } get duration() { if ("DURATION" in this.attr) { const duration = this.attr.decimalFloatingPoint("DURATION"); if (isFiniteNumber(duration)) { return duration; } } else if (this._endDate) { return (this._endDate.getTime() - this._startDate.getTime()) / 1000; } return null; } get plannedDuration() { if ("PLANNED-DURATION" in this.attr) { return this.attr.decimalFloatingPoint("PLANNED-DURATION"); } return null; } get endOnNext() { return this.attr.bool("END-ON-NEXT"); } get isValid() { return !!this.id && !this._badValueForSameId && isFiniteNumber(this.startDate.getTime()) && (this.duration === null || this.duration >= 0) && (!this.endOnNext || !!this.class); } } class LoadStats { constructor() { this.aborted = false; this.loaded = 0; this.retry = 0; this.total = 0; this.chunkCount = 0; this.bwEstimate = 0; this.loading = { start: 0, first: 0, end: 0 }; this.parsing = { start: 0, end: 0 }; this.buffering = { start: 0, first: 0, end: 0 }; } } var ElementaryStreamTypes = { AUDIO: "audio", VIDEO: "video", AUDIOVIDEO: "audiovideo" }; class BaseSegment { constructor(baseurl) { this._byteRange = null; this._url = null; // baseurl is the URL to the playlist this.baseurl = void 0; // relurl is the portion of the URL that comes from inside the playlist. this.relurl = void 0; // Holds the types of data this fragment supports this.elementaryStreams = { [ElementaryStreamTypes.AUDIO]: null, [ElementaryStreamTypes.VIDEO]: null, [ElementaryStreamTypes.AUDIOVIDEO]: null }; this.baseurl = baseurl; } // setByteRange converts a EXT-X-BYTERANGE attribute into a two element array setByteRange(value, previous) { const params = value.split('@', 2); let start; if (params.length === 1) { start = (previous == null ? void 0 : previous.byteRangeEndOffset) || 0; } else { start = parseInt(params[1]); } this._byteRange = [start, parseInt(params[0]) + start]; } get byteRange() { if (!this._byteRange) { return []; } return this._byteRange; } get byteRangeStartOffset() { return this.byteRange[0]; } get byteRangeEndOffset() { return this.byteRange[1]; } get url() { if (!this._url && this.baseurl && this.relurl) { this._url = urlToolkitExports.buildAbsoluteURL(this.baseurl, this.relurl, { alwaysNormalize: true }); } return this._url || ''; } set url(value) { this._url = value; } } /** * Object representing parsed data from an HLS Segment. Found in {@link hls.js#LevelDetails.fragments}. */ class Fragment extends BaseSegment { constructor(type, baseurl) { super(baseurl); this._decryptdata = null; this.rawProgramDateTime = null; this.programDateTime = null; this.tagList = []; // EXTINF has to be present for a m3u8 to be considered valid this.duration = 0; // sn notates the sequence number for a segment, and if set to a string can be 'initSegment' this.sn = 0; // levelkeys are the EXT-X-KEY tags that apply to this segment for decryption // core difference from the private field _decryptdata is the lack of the initialized IV // _decryptdata will set the IV for this segment based on the segment number in the fragment this.levelkeys = void 0; // A string representing the fragment type this.type = void 0; // A reference to the loader. Set while the fragment is loading, and removed afterwards. Used to abort fragment loading this.loader = null; // A reference to the key loader. Set while the key is loading, and removed afterwards. Used to abort key loading this.keyLoader = null; // The level/track index to which the fragment belongs this.level = -1; // The continuity counter of the fragment this.cc = 0; // The starting Presentation Time Stamp (PTS) of the fragment. Set after transmux complete. this.startPTS = void 0; // The ending Presentation Time Stamp (PTS) of the fragment. Set after transmux complete. this.endPTS = void 0; // The starting Decode Time Stamp (DTS) of the fragment. Set after transmux complete. this.startDTS = void 0; // The ending Decode Time Stamp (DTS) of the fragment. Set after transmux complete. this.endDTS = void 0; // The start time of the fragment, as listed in the manifest. Updated after transmux complete. this.start = 0; // Set by `updateFragPTSDTS` in level-helper this.deltaPTS = void 0; // The maximum starting Presentation Time Stamp (audio/video PTS) of the fragment. Set after transmux complete. this.maxStartPTS = void 0; // The minimum ending Presentation Time Stamp (audio/video PTS) of the fragment. Set after transmux complete. this.minEndPTS = void 0; // Load/parse timing information this.stats = new LoadStats(); // Init Segment bytes (unset for media segments) this.data = void 0; // A flag indicating whether the segment was downloaded in order to test bitrate, and was not buffered this.bitrateTest = false; // #EXTINF segment title this.title = null; // The Media Initialization Section for this segment this.initSegment = null; // Fragment is the last fragment in the media playlist this.endList = void 0; // Fragment is marked by an EXT-X-GAP tag indicating that it does not contain media data and should not be loaded this.gap = void 0; // Deprecated this.urlId = 0; this.type = type; } get decryptdata() { const { levelkeys } = this; if (!levelkeys && !this._decryptdata) { return null; } if (!this._decryptdata && this.levelkeys && !this.levelkeys.NONE) { const key = this.levelkeys.identity; if (key) { this._decryptdata = key.getDecryptData(this.sn); } else { const keyFormats = Object.keys(this.levelkeys); if (keyFormats.length === 1) { return this._decryptdata = this.levelkeys[keyFormats[0]].getDecryptData(this.sn); } } } return this._decryptdata; } get end() { return this.start + this.duration; } get endProgramDateTime() { if (this.programDateTime === null) { return null; } if (!isFiniteNumber(this.programDateTime)) { return null; } const duration = !isFiniteNumber(this.duration) ? 0 : this.duration; return this.programDateTime + duration * 1000; } get encrypted() { var _this$_decryptdata; // At the m3u8-parser level we need to add support for manifest signalled keyformats // when we want the fragment to start reporting that it is encrypted. // Currently, keyFormat will only be set for identity keys if ((_this$_decryptdata = this._decryptdata) != null && _this$_decryptdata.encrypted) { return true; } else if (this.levelkeys) { const keyFormats = Object.keys(this.levelkeys); const len = keyFormats.length; if (len > 1 || len === 1 && this.levelkeys[keyFormats[0]].encrypted) { return true; } } return false; } setKeyFormat(keyFormat) { if (this.levelkeys) { const key = this.levelkeys[keyFormat]; if (key && !this._decryptdata) { this._decryptdata = key.getDecryptData(this.sn); } } } abortRequests() { var _this$loader, _this$keyLoader; (_this$loader = this.loader) == null ? void 0 : _this$loader.abort(); (_this$keyLoader = this.keyLoader) == null ? void 0 : _this$keyLoader.abort(); } setElementaryStreamInfo(type, startPTS, endPTS, startDTS, endDTS, partial = false) { const { elementaryStreams } = this; const info = elementaryStreams[type]; if (!info) { elementaryStreams[type] = { startPTS, endPTS, startDTS, endDTS, partial }; return; } info.startPTS = Math.min(info.startPTS, startPTS); info.endPTS = Math.max(info.endPTS, endPTS); info.startDTS = Math.min(info.startDTS, startDTS); info.endDTS = Math.max(info.endDTS, endDTS); } clearElementaryStreamInfo() { const { elementaryStreams } = this; elementaryStreams[ElementaryStreamTypes.AUDIO] = null; elementaryStreams[ElementaryStreamTypes.VIDEO] = null; elementaryStreams[ElementaryStreamTypes.AUDIOVIDEO] = null; } } /** * Object representing parsed data from an HLS Partial Segment. Found in {@link hls.js#LevelDetails.partList}. */ class Part extends BaseSegment { constructor(partAttrs, frag, baseurl, index, previous) { super(baseurl); this.fragOffset = 0; this.duration = 0; this.gap = false; this.independent = false; this.relurl = void 0; this.fragment = void 0; this.index = void 0; this.stats = new LoadStats(); this.duration = partAttrs.decimalFloatingPoint('DURATION'); this.gap = partAttrs.bool('GAP'); this.independent = partAttrs.bool('INDEPENDENT'); this.relurl = partAttrs.enumeratedString('URI'); this.fragment = frag; this.index = index; const byteRange = partAttrs.enumeratedString('BYTERANGE'); if (byteRange) { this.setByteRange(byteRange, previous); } if (previous) { this.fragOffset = previous.fragOffset + previous.duration; } } get start() { return this.fragment.start + this.fragOffset; } get end() { return this.start + this.duration; } get loaded() { const { elementaryStreams } = this; return !!(elementaryStreams.audio || elementaryStreams.video || elementaryStreams.audiovideo); } } const DEFAULT_TARGET_DURATION = 10; /** * Object representing parsed data from an HLS Media Playlist. Found in {@link hls.js#Level.details}. */ class LevelDetails { constructor(baseUrl) { this.PTSKnown = false; this.alignedSliding = false; this.averagetargetduration = void 0; this.endCC = 0; this.endSN = 0; this.fragments = void 0; this.fragmentHint = void 0; this.partList = null; this.dateRanges = void 0; this.live = true; this.ageHeader = 0; this.advancedDateTime = void 0; this.updated = true; this.advanced = true; this.availabilityDelay = void 0; // Manifest reload synchronization this.misses = 0; this.startCC = 0; this.startSN = 0; this.startTimeOffset = null; this.targetduration = 0; this.totalduration = 0; this.type = null; this.url = void 0; this.m3u8 = ''; this.version = null; this.canBlockReload = false; this.canSkipUntil = 0; this.canSkipDateRanges = false; this.skippedSegments = 0; this.recentlyRemovedDateranges = void 0; this.partHoldBack = 0; this.holdBack = 0; this.partTarget = 0; this.preloadHint = void 0; this.renditionReports = void 0; this.tuneInGoal = 0; this.deltaUpdateFailed = void 0; this.driftStartTime = 0; this.driftEndTime = 0; this.driftStart = 0; this.driftEnd = 0; this.encryptedFragments = void 0; this.playlistParsingError = null; this.variableList = null; this.hasVariableRefs = false; this.fragments = []; this.encryptedFragments = []; this.dateRanges = {}; this.url = baseUrl; } reloaded(previous) { if (!previous) { this.advanced = true; this.updated = true; return; } const partSnDiff = this.lastPartSn - previous.lastPartSn; const partIndexDiff = this.lastPartIndex - previous.lastPartIndex; this.updated = this.endSN !== previous.endSN || !!partIndexDiff || !!partSnDiff || !this.live; this.advanced = this.endSN > previous.endSN || partSnDiff > 0 || partSnDiff === 0 && partIndexDiff > 0; if (this.updated || this.advanced) { this.misses = Math.floor(previous.misses * 0.6); } else { this.misses = previous.misses + 1; } this.availabilityDelay = previous.availabilityDelay; } get hasProgramDateTime() { if (this.fragments.length) { return isFiniteNumber(this.fragments[this.fragments.length - 1].programDateTime); } return false; } get levelTargetDuration() { return this.averagetargetduration || this.targetduration || DEFAULT_TARGET_DURATION; } get drift() { const runTime = this.driftEndTime - this.driftStartTime; if (runTime > 0) { const runDuration = this.driftEnd - this.driftStart; return runDuration * 1000 / runTime; } return 1; } get edge() { return this.partEnd || this.fragmentEnd; } get partEnd() { var _this$partList; if ((_this$partList = this.partList) != null && _this$partList.length) { return this.partList[this.partList.length - 1].end; } return this.fragmentEnd; } get fragmentEnd() { var _this$fragments; if ((_this$fragments = this.fragments) != null && _this$fragments.length) { return this.fragments[this.fragments.length - 1].end; } return 0; } get age() { if (this.advancedDateTime) { return Math.max(Date.now() - this.advancedDateTime, 0) / 1000; } return 0; } get lastPartIndex() { var _this$partList2; if ((_this$partList2 = this.partList) != null && _this$partList2.length) { return this.partList[this.partList.length - 1].index; } return -1; } get lastPartSn() { var _this$partList3; if ((_this$partList3 = this.partList) != null && _this$partList3.length) { return this.partList[this.partList.length - 1].fragment.sn; } return this.endSN; } } var DecrypterAesMode = { cbc: 0, ctr: 1 }; function isFullSegmentEncryption(method) { return method === 'AES-128' || method === 'AES-256' || method === 'AES-256-CTR'; } function getAesModeFromFullSegmentMethod(method) { switch (method) { case 'AES-128': case 'AES-256': return DecrypterAesMode.cbc; case 'AES-256-CTR': return DecrypterAesMode.ctr; default: throw new Error(`invalid full segment method ${method}`); } } // This file is inserted as a shim for modules which we do not want to include into the distro. // This replacement is done in the "alias" plugin of the rollup config. var empty = undefined; var Cues = /*@__PURE__*/getDefaultExportFromCjs(empty); function sliceUint8(array, start, end) { // @ts-expect-error This polyfills IE11 usage of Uint8Array slice. // It always exists in the TypeScript definition so fails, but it fails at runtime on IE11. return Uint8Array.prototype.slice ? array.slice(start, end) : new Uint8Array(Array.prototype.slice.call(array, start, end)); } // breaking up those two types in order to clarify what is happening in the decoding path. /** * Returns true if an ID3 header can be found at offset in data * @param data - The data to search * @param offset - The offset at which to start searching */ const isHeader$2 = (data, offset) => { /* * http://id3.org/id3v2.3.0 * [0] = 'I' * [1] = 'D' * [2] = '3' * [3,4] = {Version} * [5] = {Flags} * [6-9] = {ID3 Size} * * An ID3v2 tag can be detected with the following pattern: * $49 44 33 yy yy xx zz zz zz zz * Where yy is less than $FF, xx is the 'flags' byte and zz is less than $80 */ if (offset + 10 <= data.length) { // look for 'ID3' identifier if (data[offset] === 0x49 && data[offset + 1] === 0x44 && data[offset + 2] === 0x33) { // check version is within range if (data[offset + 3] < 0xff && data[offset + 4] < 0xff) { // check size is within range if (data[offset + 6] < 0x80 && data[offset + 7] < 0x80 && data[offset + 8] < 0x80 && data[offset + 9] < 0x80) { return true; } } } } return false; }; /** * Returns true if an ID3 footer can be found at offset in data * @param data - The data to search * @param offset - The offset at which to start searching */ const isFooter = (data, offset) => { /* * The footer is a copy of the header, but with a different identifier */ if (offset + 10 <= data.length) { // look for '3DI' identifier if (data[offset] === 0x33 && data[offset + 1] === 0x44 && data[offset + 2] === 0x49) { // check version is within range if (data[offset + 3] < 0xff && data[offset + 4] < 0xff) { // check size is within range if (data[offset + 6] < 0x80 && data[offset + 7] < 0x80 && data[offset + 8] < 0x80 && data[offset + 9] < 0x80) { return true; } } } } return false; }; /** * Returns any adjacent ID3 tags found in data starting at offset, as one block of data * @param data - The data to search in * @param offset - The offset at which to start searching * @returns the block of data containing any ID3 tags found * or *undefined* if no header is found at the starting offset */ const getID3Data = (data, offset) => { const front = offset; let length = 0; while (isHeader$2(data, offset)) { // ID3 header is 10 bytes length += 10; const size = readSize(data, offset + 6); length += size; if (isFooter(data, offset + 10)) { // ID3 footer is 10 bytes length += 10; } offset += length; } if (length > 0) { return data.subarray(front, front + length); } return undefined; }; const readSize = (data, offset) => { let size = 0; size = (data[offset] & 0x7f) << 21; size |= (data[offset + 1] & 0x7f) << 14; size |= (data[offset + 2] & 0x7f) << 7; size |= data[offset + 3] & 0x7f; return size; }; const canParse$2 = (data, offset) => { return isHeader$2(data, offset) && readSize(data, offset + 6) + 10 <= data.length - offset; }; /** * Searches for the Elementary Stream timestamp found in the ID3 data chunk * @param data - Block of data containing one or more ID3 tags */ const getTimeStamp = data => { const frames = getID3Frames(data); for (let i = 0; i < frames.length; i++) { const frame = frames[i]; if (isTimeStampFrame(frame)) { return readTimeStamp(frame); } } return undefined; }; /** * Returns true if the ID3 frame is an Elementary Stream timestamp frame */ const isTimeStampFrame = frame => { return frame && frame.key === 'PRIV' && frame.info === 'com.apple.streaming.transportStreamTimestamp'; }; const getFrameData = data => { /* Frame ID $xx xx xx xx (four characters) Size $xx xx xx xx Flags $xx xx */ const type = String.fromCharCode(data[0], data[1], data[2], data[3]); const size = readSize(data, 4); // skip frame id, size, and flags const offset = 10; return { type, size, data: data.subarray(offset, offset + size) }; }; /** * Returns an array of ID3 frames found in all the ID3 tags in the id3Data * @param id3Data - The ID3 data containing one or more ID3 tags */ const getID3Frames = id3Data => { let offset = 0; const frames = []; while (isHeader$2(id3Data, offset)) { const size = readSize(id3Data, offset + 6); // skip past ID3 header offset += 10; const end = offset + size; // loop through frames in the ID3 tag while (offset + 8 < end) { const frameData = getFrameData(id3Data.subarray(offset)); const frame = decodeFrame(frameData); if (frame) { frames.push(frame); } // skip frame header and frame data offset += frameData.size + 10; } if (isFooter(id3Data, offset)) { offset += 10; } } return frames; }; const decodeFrame = frame => { if (frame.type === 'PRIV') { return decodePrivFrame(frame); } else if (frame.type[0] === 'W') { return decodeURLFrame(frame); } return decodeTextFrame(frame); }; const decodePrivFrame = frame => { /* Format: \0 */ if (frame.size < 2) { return undefined; } const owner = utf8ArrayToStr(frame.data, true); const privateData = new Uint8Array(frame.data.subarray(owner.length + 1)); return { key: frame.type, info: owner, data: privateData.buffer }; }; const decodeTextFrame = frame => { if (frame.size < 2) { return undefined; } if (frame.type === 'TXXX') { /* Format: [0] = {Text Encoding} [1-?] = {Description}\0{Value} */ let index = 1; const description = utf8ArrayToStr(frame.data.subarray(index), true); index += description.length + 1; const value = utf8ArrayToStr(frame.data.subarray(index)); return { key: frame.type, info: description, data: value }; } /* Format: [0] = {Text Encoding} [1-?] = {Value} */ const text = utf8ArrayToStr(frame.data.subarray(1)); return { key: frame.type, data: text }; }; const decodeURLFrame = frame => { if (frame.type === 'WXXX') { /* Format: [0] = {Text Encoding} [1-?] = {Description}\0{URL} */ if (frame.size < 2) { return undefined; } let index = 1; const description = utf8ArrayToStr(frame.data.subarray(index), true); index += description.length + 1; const value = utf8ArrayToStr(frame.data.subarray(index)); return { key: frame.type, info: description, data: value }; } /* Format: [0-?] = {URL} */ const url = utf8ArrayToStr(frame.data); return { key: frame.type, data: url }; }; const readTimeStamp = timeStampFrame => { if (timeStampFrame.data.byteLength === 8) { const data = new Uint8Array(timeStampFrame.data); // timestamp is 33 bit expressed as a big-endian eight-octet number, // with the upper 31 bits set to zero. const pts33Bit = data[3] & 0x1; let timestamp = (data[4] << 23) + (data[5] << 15) + (data[6] << 7) + data[7]; timestamp /= 45; if (pts33Bit) { timestamp += 47721858.84; } // 2^32 / 90 return Math.round(timestamp); } return undefined; }; // http://stackoverflow.com/questions/8936984/uint8array-to-string-in-javascript/22373197 // http://www.onicos.com/staff/iz/amuse/javascript/expert/utf.txt /* utf.js - UTF-8 <=> UTF-16 convertion * * Copyright (C) 1999 Masanao Izumo * Version: 1.0 * LastModified: Dec 25 1999 * This library is free. You can redistribute it and/or modify it. */ const utf8ArrayToStr = (array, exitOnNull = false) => { const decoder = getTextDecoder(); if (decoder) { const decoded = decoder.decode(array); if (exitOnNull) { // grab up to the first null const idx = decoded.indexOf('\0'); return idx !== -1 ? decoded.substring(0, idx) : decoded; } // remove any null characters return decoded.replace(/\0/g, ''); } const len = array.length; let c; let char2; let char3; let out = ''; let i = 0; while (i < len) { c = array[i++]; if (c === 0x00 && exitOnNull) { return out; } else if (c === 0x00 || c === 0x03) { // If the character is 3 (END_OF_TEXT) or 0 (NULL) then skip it continue; } switch (c >> 4) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: // 0xxxxxxx out += String.fromCharCode(c); break; case 12: case 13: // 110x xxxx 10xx xxxx char2 = array[i++]; out += String.fromCharCode((c & 0x1f) << 6 | char2 & 0x3f); break; case 14: // 1110 xxxx 10xx xxxx 10xx xxxx char2 = array[i++]; char3 = array[i++]; out += String.fromCharCode((c & 0x0f) << 12 | (char2 & 0x3f) << 6 | (char3 & 0x3f) << 0); break; } } return out; }; let decoder; function getTextDecoder() { // On Play Station 4, TextDecoder is defined but partially implemented. // Manual decoding option is preferable if (navigator.userAgent.includes('PlayStation 4')) { return; } if (!decoder && typeof self.TextDecoder !== 'undefined') { decoder = new self.TextDecoder('utf-8'); } return decoder; } /** * hex dump helper class */ const Hex = { hexDump: function (array) { let str = ''; for (let i = 0; i < array.length; i++) { let h = array[i].toString(16); if (h.length < 2) { h = '0' + h; } str += h; } return str; } }; const UINT32_MAX$1 = Math.pow(2, 32) - 1; const push = [].push; // We are using fixed track IDs for driving the MP4 remuxer // instead of following the TS PIDs. // There is no reason not to do this and some browsers/SourceBuffer-demuxers // may not like if there are TrackID "switches" // See https://github.com/video-dev/hls.js/issues/1331 // Here we are mapping our internal track types to constant MP4 track IDs // With MSE currently one can only have one track of each, and we are muxing // whatever video/audio rendition in them. const RemuxerTrackIdConfig = { video: 1, audio: 2, id3: 3, text: 4 }; function bin2str(data) { return String.fromCharCode.apply(null, data); } function readUint16(buffer, offset) { const val = buffer[offset] << 8 | buffer[offset + 1]; return val < 0 ? 65536 + val : val; } function readUint32(buffer, offset) { const val = readSint32(buffer, offset); return val < 0 ? 4294967296 + val : val; } function readSint32(buffer, offset) { return buffer[offset] << 24 | buffer[offset + 1] << 16 | buffer[offset + 2] << 8 | buffer[offset + 3]; } function writeUint32(buffer, offset, value) { buffer[offset] = value >> 24; buffer[offset + 1] = value >> 16 & 0xff; buffer[offset + 2] = value >> 8 & 0xff; buffer[offset + 3] = value & 0xff; } // Find "moof" box function hasMoofData(data) { const end = data.byteLength; for (let i = 0; i < end;) { const size = readUint32(data, i); if (size > 8 && data[i + 4] === 0x6d && data[i + 5] === 0x6f && data[i + 6] === 0x6f && data[i + 7] === 0x66) { return true; } i = size > 1 ? i + size : end; } return false; } // Find the data for a box specified by its path function findBox(data, path) { const results = []; if (!path.length) { // short-circuit the search for empty paths return results; } const end = data.byteLength; for (let i = 0; i < end;) { const size = readUint32(data, i); const type = bin2str(data.subarray(i + 4, i + 8)); const endbox = size > 1 ? i + size : end; if (type === path[0]) { if (path.length === 1) { // this is the end of the path and we've found the box we were // looking for results.push(data.subarray(i + 8, endbox)); } else { // recursively search for the next box along the path const subresults = findBox(data.subarray(i + 8, endbox), path.slice(1)); if (subresults.length) { push.apply(results, subresults); } } } i = endbox; } // we've finished searching all of data return results; } function parseSegmentIndex(sidx) { const references = []; const version = sidx[0]; // set initial offset, we skip the reference ID (not needed) let index = 8; const timescale = readUint32(sidx, index); index += 4; // TODO: parse earliestPresentationTime and firstOffset // usually zero in our case const earliestPresentationTime = 0; const firstOffset = 0; if (version === 0) { index += 8; } else { index += 16; } // skip reserved index += 2; let startByte = sidx.length + firstOffset; const referencesCount = readUint16(sidx, index); index += 2; for (let i = 0; i < referencesCount; i++) { let referenceIndex = index; const referenceInfo = readUint32(sidx, referenceIndex); referenceIndex += 4; const referenceSize = referenceInfo & 0x7fffffff; const referenceType = (referenceInfo & 0x80000000) >>> 31; if (referenceType === 1) { logger.warn('SIDX has hierarchical references (not supported)'); return null; } const subsegmentDuration = readUint32(sidx, referenceIndex); referenceIndex += 4; references.push({ referenceSize, subsegmentDuration, // unscaled info: { duration: subsegmentDuration / timescale, start: startByte, end: startByte + referenceSize - 1 } }); startByte += referenceSize; // Skipping 1 bit for |startsWithSap|, 3 bits for |sapType|, and 28 bits // for |sapDelta|. referenceIndex += 4; // skip to next ref index = referenceIndex; } return { earliestPresentationTime, timescale, version, referencesCount, references }; } /** * Parses an MP4 initialization segment and extracts stream type and * timescale values for any declared tracks. Timescale values indicate the * number of clock ticks per second to assume for time-based values * elsewhere in the MP4. * * To determine the start time of an MP4, you need two pieces of * information: the timescale unit and the earliest base media decode * time. Multiple timescales can be specified within an MP4 but the * base media decode time is always expressed in the timescale from * the media header box for the track: * ``` * moov > trak > mdia > mdhd.timescale * moov > trak > mdia > hdlr * ``` * @param initSegment the bytes of the init segment * @returns a hash of track type to timescale values or null if * the init segment is malformed. */ function parseInitSegment(initSegment) { const result = []; const traks = findBox(initSegment, ['moov', 'trak']); for (let i = 0; i < traks.length; i++) { const trak = traks[i]; const tkhd = findBox(trak, ['tkhd'])[0]; if (tkhd) { let version = tkhd[0]; const trackId = readUint32(tkhd, version === 0 ? 12 : 20); const mdhd = findBox(trak, ['mdia', 'mdhd'])[0]; if (mdhd) { version = mdhd[0]; const timescale = readUint32(mdhd, version === 0 ? 12 : 20); const hdlr = findBox(trak, ['mdia', 'hdlr'])[0]; if (hdlr) { const hdlrType = bin2str(hdlr.subarray(8, 12)); const type = { soun: ElementaryStreamTypes.AUDIO, vide: ElementaryStreamTypes.VIDEO }[hdlrType]; if (type) { // Parse codec details const stsd = findBox(trak, ['mdia', 'minf', 'stbl', 'stsd'])[0]; const stsdData = parseStsd(stsd); result[trackId] = { timescale, type }; result[type] = _objectSpread2({ timescale, id: trackId }, stsdData); } } } } } const trex = findBox(initSegment, ['moov', 'mvex', 'trex']); trex.forEach(trex => { const trackId = readUint32(trex, 4); const track = result[trackId]; if (track) { track.default = { duration: readUint32(trex, 12), flags: readUint32(trex, 20) }; } }); return result; } function parseStsd(stsd) { const sampleEntries = stsd.subarray(8); const sampleEntriesEnd = sampleEntries.subarray(8 + 78); const fourCC = bin2str(sampleEntries.subarray(4, 8)); let codec = fourCC; const encrypted = fourCC === 'enca' || fourCC === 'encv'; if (encrypted) { const encBox = findBox(sampleEntries, [fourCC])[0]; const encBoxChildren = encBox.subarray(fourCC === 'enca' ? 28 : 78); const sinfs = findBox(encBoxChildren, ['sinf']); sinfs.forEach(sinf => { const schm = findBox(sinf, ['schm'])[0]; if (schm) { const scheme = bin2str(schm.subarray(4, 8)); if (scheme === 'cbcs' || scheme === 'cenc') { const frma = findBox(sinf, ['frma'])[0]; if (frma) { // for encrypted content codec fourCC will be in frma codec = bin2str(frma); } } } }); } switch (codec) { case 'avc1': case 'avc2': case 'avc3': case 'avc4': { // extract profile + compatibility + level out of avcC box const avcCBox = findBox(sampleEntriesEnd, ['avcC'])[0]; codec += '.' + toHex(avcCBox[1]) + toHex(avcCBox[2]) + toHex(avcCBox[3]); break; } case 'mp4a': { const codecBox = findBox(sampleEntries, [fourCC])[0]; const esdsBox = findBox(codecBox.subarray(28), ['esds'])[0]; if (esdsBox && esdsBox.length > 12) { let i = 4; // ES Descriptor tag if (esdsBox[i++] !== 0x03) { break; } i = skipBERInteger(esdsBox, i); i += 2; // skip es_id; const flags = esdsBox[i++]; if (flags & 0x80) { i += 2; // skip dependency es_id } if (flags & 0x40) { i += esdsBox[i++]; // skip URL } // Decoder config descriptor if (esdsBox[i++] !== 0x04) { break; } i = skipBERInteger(esdsBox, i); const objectType = esdsBox[i++]; if (objectType === 0x40) { codec += '.' + toHex(objectType); } else { break; } i += 12; // Decoder specific info if (esdsBox[i++] !== 0x05) { break; } i = skipBERInteger(esdsBox, i); const firstByte = esdsBox[i++]; let audioObjectType = (firstByte & 0xf8) >> 3; if (audioObjectType === 31) { audioObjectType += 1 + ((firstByte & 0x7) << 3) + ((esdsBox[i] & 0xe0) >> 5); } codec += '.' + audioObjectType; } break; } case 'hvc1': case 'hev1': { const hvcCBox = findBox(sampleEntriesEnd, ['hvcC'])[0]; const profileByte = hvcCBox[1]; const profileSpace = ['', 'A', 'B', 'C'][profileByte >> 6]; const generalProfileIdc = profileByte & 0x1f; const profileCompat = readUint32(hvcCBox, 2); const tierFlag = (profileByte & 0x20) >> 5 ? 'H' : 'L'; const levelIDC = hvcCBox[12]; const constraintIndicator = hvcCBox.subarray(6, 12); codec += '.' + profileSpace + generalProfileIdc; codec += '.' + profileCompat.toString(16).toUpperCase(); codec += '.' + tierFlag + levelIDC; let constraintString = ''; for (let i = constraintIndicator.length; i--;) { const byte = constraintIndicator[i]; if (byte || constraintString) { const encodedByte = byte.toString(16).toUpperCase(); constraintString = '.' + encodedByte + constraintString; } } codec += constraintString; break; } case 'dvh1': case 'dvhe': { const dvcCBox = findBox(sampleEntriesEnd, ['dvcC'])[0]; const profile = dvcCBox[2] >> 1 & 0x7f; const level = dvcCBox[2] << 5 & 0x20 | dvcCBox[3] >> 3 & 0x1f; codec += '.' + addLeadingZero(profile) + '.' + addLeadingZero(level); break; } case 'vp09': { const vpcCBox = findBox(sampleEntriesEnd, ['vpcC'])[0]; const profile = vpcCBox[4]; const level = vpcCBox[5]; const bitDepth = vpcCBox[6] >> 4 & 0x0f; codec += '.' + addLeadingZero(profile) + '.' + addLeadingZero(level) + '.' + addLeadingZero(bitDepth); break; } case 'av01': { const av1CBox = findBox(sampleEntriesEnd, ['av1C'])[0]; const profile = av1CBox[1] >>> 5; const level = av1CBox[1] & 0x1f; const tierFlag = av1CBox[2] >>> 7 ? 'H' : 'M'; const highBitDepth = (av1CBox[2] & 0x40) >> 6; const twelveBit = (av1CBox[2] & 0x20) >> 5; const bitDepth = profile === 2 && highBitDepth ? twelveBit ? 12 : 10 : highBitDepth ? 10 : 8; const monochrome = (av1CBox[2] & 0x10) >> 4; const chromaSubsamplingX = (av1CBox[2] & 0x08) >> 3; const chromaSubsamplingY = (av1CBox[2] & 0x04) >> 2; const chromaSamplePosition = av1CBox[2] & 0x03; // TODO: parse color_description_present_flag // default it to BT.709/limited range for now // more info https://aomediacodec.github.io/av1-isobmff/#av1codecconfigurationbox-syntax const colorPrimaries = 1; const transferCharacteristics = 1; const matrixCoefficients = 1; const videoFullRangeFlag = 0; codec += '.' + profile + '.' + addLeadingZero(level) + tierFlag + '.' + addLeadingZero(bitDepth) + '.' + monochrome + '.' + chromaSubsamplingX + chromaSubsamplingY + chromaSamplePosition + '.' + addLeadingZero(colorPrimaries) + '.' + addLeadingZero(transferCharacteristics) + '.' + addLeadingZero(matrixCoefficients) + '.' + videoFullRangeFlag; break; } } return { codec, encrypted }; } function skipBERInteger(bytes, i) { const limit = i + 5; while (bytes[i++] & 0x80 && i < limit) {} return i; } function toHex(x) { return ('0' + x.toString(16).toUpperCase()).slice(-2); } function addLeadingZero(num) { return (num < 10 ? '0' : '') + num; } function patchEncyptionData(initSegment, decryptdata) { if (!initSegment || !decryptdata) { return initSegment; } const keyId = decryptdata.keyId; if (keyId && decryptdata.isCommonEncryption) { const traks = findBox(initSegment, ['moov', 'trak']); traks.forEach(trak => { const stsd = findBox(trak, ['mdia', 'minf', 'stbl', 'stsd'])[0]; // skip the sample entry count const sampleEntries = stsd.subarray(8); let encBoxes = findBox(sampleEntries, ['enca']); const isAudio = encBoxes.length > 0; if (!isAudio) { encBoxes = findBox(sampleEntries, ['encv']); } encBoxes.forEach(enc => { const encBoxChildren = isAudio ? enc.subarray(28) : enc.subarray(78); const sinfBoxes = findBox(encBoxChildren, ['sinf']); sinfBoxes.forEach(sinf => { const tenc = parseSinf(sinf); if (tenc) { // Look for default key id (keyID offset is always 8 within the tenc box): const tencKeyId = tenc.subarray(8, 24); if (!tencKeyId.some(b => b !== 0)) { logger.log(`[eme] Patching keyId in 'enc${isAudio ? 'a' : 'v'}>sinf>>tenc' box: ${Hex.hexDump(tencKeyId)} -> ${Hex.hexDump(keyId)}`); tenc.set(keyId, 8); } } }); }); }); } return initSegment; } function parseSinf(sinf) { const schm = findBox(sinf, ['schm'])[0]; if (schm) { const scheme = bin2str(schm.subarray(4, 8)); if (scheme === 'cbcs' || scheme === 'cenc') { return findBox(sinf, ['schi', 'tenc'])[0]; } } logger.error(`[eme] missing 'schm' box`); return null; } /** * Determine the base media decode start time, in seconds, for an MP4 * fragment. If multiple fragments are specified, the earliest time is * returned. * * The base media decode time can be parsed from track fragment * metadata: * ``` * moof > traf > tfdt.baseMediaDecodeTime * ``` * It requires the timescale value from the mdhd to interpret. * * @param initData - a hash of track type to timescale values * @param fmp4 - the bytes of the mp4 fragment * @returns the earliest base media decode start time for the * fragment, in seconds */ function getStartDTS(initData, fmp4) { // we need info from two children of each track fragment box return findBox(fmp4, ['moof', 'traf']).reduce((result, traf) => { const tfdt = findBox(traf, ['tfdt'])[0]; const version = tfdt[0]; const start = findBox(traf, ['tfhd']).reduce((result, tfhd) => { // get the track id from the tfhd const id = readUint32(tfhd, 4); const track = initData[id]; if (track) { let baseTime = readUint32(tfdt, 4); if (version === 1) { // If value is too large, assume signed 64-bit. Negative track fragment decode times are invalid, but they exist in the wild. // This prevents large values from being used for initPTS, which can cause playlist sync issues. // https://github.com/video-dev/hls.js/issues/5303 if (baseTime === UINT32_MAX$1) { logger.warn(`[mp4-demuxer]: Ignoring assumed invalid signed 64-bit track fragment decode time`); return result; } baseTime *= UINT32_MAX$1 + 1; baseTime += readUint32(tfdt, 8); } // assume a 90kHz clock if no timescale was specified const scale = track.timescale || 90e3; // convert base time to seconds const startTime = baseTime / scale; if (isFiniteNumber(startTime) && (result === null || startTime < result)) { return startTime; } } return result; }, null); if (start !== null && isFiniteNumber(start) && (result === null || start < result)) { return start; } return result; }, null); } /* For Reference: aligned(8) class TrackFragmentHeaderBox extends FullBox(‘tfhd’, 0, tf_flags){ unsigned int(32) track_ID; // all the following are optional fields unsigned int(64) base_data_offset; unsigned int(32) sample_description_index; unsigned int(32) default_sample_duration; unsigned int(32) default_sample_size; unsigned int(32) default_sample_flags } */ function getDuration(data, initData) { let rawDuration = 0; let videoDuration = 0; let audioDuration = 0; const trafs = findBox(data, ['moof', 'traf']); for (let i = 0; i < trafs.length; i++) { const traf = trafs[i]; // There is only one tfhd & trun per traf // This is true for CMAF style content, and we should perhaps check the ftyp // and only look for a single trun then, but for ISOBMFF we should check // for multiple track runs. const tfhd = findBox(traf, ['tfhd'])[0]; // get the track id from the tfhd const id = readUint32(tfhd, 4); const track = initData[id]; if (!track) { continue; } const trackDefault = track.default; const tfhdFlags = readUint32(tfhd, 0) | (trackDefault == null ? void 0 : trackDefault.flags); let sampleDuration = trackDefault == null ? void 0 : trackDefault.duration; if (tfhdFlags & 0x000008) { // 0x000008 indicates the presence of the default_sample_duration field if (tfhdFlags & 0x000002) { // 0x000002 indicates the presence of the sample_description_index field, which precedes default_sample_duration // If present, the default_sample_duration exists at byte offset 12 sampleDuration = readUint32(tfhd, 12); } else { // Otherwise, the duration is at byte offset 8 sampleDuration = readUint32(tfhd, 8); } } // assume a 90kHz clock if no timescale was specified const timescale = track.timescale || 90e3; const truns = findBox(traf, ['trun']); for (let j = 0; j < truns.length; j++) { rawDuration = computeRawDurationFromSamples(truns[j]); if (!rawDuration && sampleDuration) { const sampleCount = readUint32(truns[j], 4); rawDuration = sampleDuration * sampleCount; } if (track.type === ElementaryStreamTypes.VIDEO) { videoDuration += rawDuration / timescale; } else if (track.type === ElementaryStreamTypes.AUDIO) { audioDuration += rawDuration / timescale; } } } if (videoDuration === 0 && audioDuration === 0) { // If duration samples are not available in the traf use sidx subsegment_duration let sidxDuration = 0; const sidxs = findBox(data, ['sidx']); for (let i = 0; i < sidxs.length; i++) { const sidx = parseSegmentIndex(sidxs[i]); if (sidx != null && sidx.references) { sidxDuration += sidx.references.reduce((dur, ref) => dur + ref.info.duration || 0, 0); } } return sidxDuration; } if (videoDuration) { return videoDuration; } return audioDuration; } /* For Reference: aligned(8) class TrackRunBox extends FullBox(‘trun’, version, tr_flags) { unsigned int(32) sample_count; // the following are optional fields signed int(32) data_offset; unsigned int(32) first_sample_flags; // all fields in the following array are optional { unsigned int(32) sample_duration; unsigned int(32) sample_size; unsigned int(32) sample_flags if (version == 0) { unsigned int(32) else { signed int(32) }[ sample_count ] } */ function computeRawDurationFromSamples(trun) { const flags = readUint32(trun, 0); // Flags are at offset 0, non-optional sample_count is at offset 4. Therefore we start 8 bytes in. // Each field is an int32, which is 4 bytes let offset = 8; // data-offset-present flag if (flags & 0x000001) { offset += 4; } // first-sample-flags-present flag if (flags & 0x000004) { offset += 4; } let duration = 0; const sampleCount = readUint32(trun, 4); for (let i = 0; i < sampleCount; i++) { // sample-duration-present flag if (flags & 0x000100) { const sampleDuration = readUint32(trun, offset); duration += sampleDuration; offset += 4; } // sample-size-present flag if (flags & 0x000200) { offset += 4; } // sample-flags-present flag if (flags & 0x000400) { offset += 4; } // sample-composition-time-offsets-present flag if (flags & 0x000800) { offset += 4; } } return duration; } function offsetStartDTS(initData, fmp4, timeOffset) { findBox(fmp4, ['moof', 'traf']).forEach(traf => { findBox(traf, ['tfhd']).forEach(tfhd => { // get the track id from the tfhd const id = readUint32(tfhd, 4); const track = initData[id]; if (!track) { return; } // assume a 90kHz clock if no timescale was specified const timescale = track.timescale || 90e3; // get the base media decode time from the tfdt findBox(traf, ['tfdt']).forEach(tfdt => { const version = tfdt[0]; const offset = timeOffset * timescale; if (offset) { let baseMediaDecodeTime = readUint32(tfdt, 4); if (version === 0) { baseMediaDecodeTime -= offset; baseMediaDecodeTime = Math.max(baseMediaDecodeTime, 0); writeUint32(tfdt, 4, baseMediaDecodeTime); } else { baseMediaDecodeTime *= Math.pow(2, 32); baseMediaDecodeTime += readUint32(tfdt, 8); baseMediaDecodeTime -= offset; baseMediaDecodeTime = Math.max(baseMediaDecodeTime, 0); const upper = Math.floor(baseMediaDecodeTime / (UINT32_MAX$1 + 1)); const lower = Math.floor(baseMediaDecodeTime % (UINT32_MAX$1 + 1)); writeUint32(tfdt, 4, upper); writeUint32(tfdt, 8, lower); } } }); }); }); } // TODO: Check if the last moof+mdat pair is part of the valid range function segmentValidRange(data) { const segmentedRange = { valid: null, remainder: null }; const moofs = findBox(data, ['moof']); if (moofs.length < 2) { segmentedRange.remainder = data; return segmentedRange; } const last = moofs[moofs.length - 1]; // Offset by 8 bytes; findBox offsets the start by as much segmentedRange.valid = sliceUint8(data, 0, last.byteOffset - 8); segmentedRange.remainder = sliceUint8(data, last.byteOffset - 8); return segmentedRange; } function appendUint8Array(data1, data2) { const temp = new Uint8Array(data1.length + data2.length); temp.set(data1); temp.set(data2, data1.length); return temp; } function parseSamples(timeOffset, track) { const seiSamples = []; const videoData = track.samples; const timescale = track.timescale; const trackId = track.id; let isHEVCFlavor = false; const moofs = findBox(videoData, ['moof']); moofs.map(moof => { const moofOffset = moof.byteOffset - 8; const trafs = findBox(moof, ['traf']); trafs.map(traf => { // get the base media decode time from the tfdt const baseTime = findBox(traf, ['tfdt']).map(tfdt => { const version = tfdt[0]; let result = readUint32(tfdt, 4); if (version === 1) { result *= Math.pow(2, 32); result += readUint32(tfdt, 8); } return result / timescale; })[0]; if (baseTime !== undefined) { timeOffset = baseTime; } return findBox(traf, ['tfhd']).map(tfhd => { const id = readUint32(tfhd, 4); const tfhdFlags = readUint32(tfhd, 0) & 0xffffff; const baseDataOffsetPresent = (tfhdFlags & 0x000001) !== 0; const sampleDescriptionIndexPresent = (tfhdFlags & 0x000002) !== 0; const defaultSampleDurationPresent = (tfhdFlags & 0x000008) !== 0; let defaultSampleDuration = 0; const defaultSampleSizePresent = (tfhdFlags & 0x000010) !== 0; let defaultSampleSize = 0; const defaultSampleFlagsPresent = (tfhdFlags & 0x000020) !== 0; let tfhdOffset = 8; if (id === trackId) { if (baseDataOffsetPresent) { tfhdOffset += 8; } if (sampleDescriptionIndexPresent) { tfhdOffset += 4; } if (defaultSampleDurationPresent) { defaultSampleDuration = readUint32(tfhd, tfhdOffset); tfhdOffset += 4; } if (defaultSampleSizePresent) { defaultSampleSize = readUint32(tfhd, tfhdOffset); tfhdOffset += 4; } if (defaultSampleFlagsPresent) { tfhdOffset += 4; } if (track.type === 'video') { isHEVCFlavor = isHEVC(track.codec); } findBox(traf, ['trun']).map(trun => { const version = trun[0]; const flags = readUint32(trun, 0) & 0xffffff; const dataOffsetPresent = (flags & 0x000001) !== 0; let dataOffset = 0; const firstSampleFlagsPresent = (flags & 0x000004) !== 0; const sampleDurationPresent = (flags & 0x000100) !== 0; let sampleDuration = 0; const sampleSizePresent = (flags & 0x000200) !== 0; let sampleSize = 0; const sampleFlagsPresent = (flags & 0x000400) !== 0; const sampleCompositionOffsetsPresent = (flags & 0x000800) !== 0; let compositionOffset = 0; const sampleCount = readUint32(trun, 4); let trunOffset = 8; // past version, flags, and sample count if (dataOffsetPresent) { dataOffset = readUint32(trun, trunOffset); trunOffset += 4; } if (firstSampleFlagsPresent) { trunOffset += 4; } let sampleOffset = dataOffset + moofOffset; for (let ix = 0; ix < sampleCount; ix++) { if (sampleDurationPresent) { sampleDuration = readUint32(trun, trunOffset); trunOffset += 4; } else { sampleDuration = defaultSampleDuration; } if (sampleSizePresent) { sampleSize = readUint32(trun, trunOffset); trunOffset += 4; } else { sampleSize = defaultSampleSize; } if (sampleFlagsPresent) { trunOffset += 4; } if (sampleCompositionOffsetsPresent) { if (version === 0) { compositionOffset = readUint32(trun, trunOffset); } else { compositionOffset = readSint32(trun, trunOffset); } trunOffset += 4; } if (track.type === ElementaryStreamTypes.VIDEO) { let naluTotalSize = 0; while (naluTotalSize < sampleSize) { const naluSize = readUint32(videoData, sampleOffset); sampleOffset += 4; if (isSEIMessage(isHEVCFlavor, videoData[sampleOffset])) { const data = videoData.subarray(sampleOffset, sampleOffset + naluSize); parseSEIMessageFromNALu(data, isHEVCFlavor ? 2 : 1, timeOffset + compositionOffset / timescale, seiSamples); } sampleOffset += naluSize; naluTotalSize += naluSize + 4; } } timeOffset += sampleDuration / timescale; } }); } }); }); }); return seiSamples; } function isHEVC(codec) { if (!codec) { return false; } const delimit = codec.indexOf('.'); const baseCodec = delimit < 0 ? codec : codec.substring(0, delimit); return baseCodec === 'hvc1' || baseCodec === 'hev1' || // Dolby Vision baseCodec === 'dvh1' || baseCodec === 'dvhe'; } function isSEIMessage(isHEVCFlavor, naluHeader) { if (isHEVCFlavor) { const naluType = naluHeader >> 1 & 0x3f; return naluType === 39 || naluType === 40; } else { const naluType = naluHeader & 0x1f; return naluType === 6; } } function parseSEIMessageFromNALu(unescapedData, headerSize, pts, samples) { const data = discardEPB(unescapedData); let seiPtr = 0; // skip nal header seiPtr += headerSize; let payloadType = 0; let payloadSize = 0; let b = 0; while (seiPtr < data.length) { payloadType = 0; do { if (seiPtr >= data.length) { break; } b = data[seiPtr++]; payloadType += b; } while (b === 0xff); // Parse payload size. payloadSize = 0; do { if (seiPtr >= data.length) { break; } b = data[seiPtr++]; payloadSize += b; } while (b === 0xff); const leftOver = data.length - seiPtr; // Create a variable to process the payload let payPtr = seiPtr; // Increment the seiPtr to the end of the payload if (payloadSize < leftOver) { seiPtr += payloadSize; } else if (payloadSize > leftOver) { // Some type of corruption has happened? logger.error(`Malformed SEI payload. ${payloadSize} is too small, only ${leftOver} bytes left to parse.`); // We might be able to parse some data, but let's be safe and ignore it. break; } if (payloadType === 4) { const countryCode = data[payPtr++]; if (countryCode === 181) { const providerCode = readUint16(data, payPtr); payPtr += 2; if (providerCode === 49) { const userStructure = readUint32(data, payPtr); payPtr += 4; if (userStructure === 0x47413934) { const userDataType = data[payPtr++]; // Raw CEA-608 bytes wrapped in CEA-708 packet if (userDataType === 3) { const firstByte = data[payPtr++]; const totalCCs = 0x1f & firstByte; const enabled = 0x40 & firstByte; const totalBytes = enabled ? 2 + totalCCs * 3 : 0; const byteArray = new Uint8Array(totalBytes); if (enabled) { byteArray[0] = firstByte; for (let i = 1; i < totalBytes; i++) { byteArray[i] = data[payPtr++]; } } samples.push({ type: userDataType, payloadType, pts, bytes: byteArray }); } } } } } else if (payloadType === 5) { if (payloadSize > 16) { const uuidStrArray = []; for (let i = 0; i < 16; i++) { const _b = data[payPtr++].toString(16); uuidStrArray.push(_b.length == 1 ? '0' + _b : _b); if (i === 3 || i === 5 || i === 7 || i === 9) { uuidStrArray.push('-'); } } const length = payloadSize - 16; const userDataBytes = new Uint8Array(length); for (let i = 0; i < length; i++) { userDataBytes[i] = data[payPtr++]; } samples.push({ payloadType, pts, uuid: uuidStrArray.join(''), userData: utf8ArrayToStr(userDataBytes), userDataBytes }); } } } } /** * remove Emulation Prevention bytes from a RBSP */ function discardEPB(data) { const length = data.byteLength; const EPBPositions = []; let i = 1; // Find all `Emulation Prevention Bytes` while (i < length - 2) { if (data[i] === 0 && data[i + 1] === 0 && data[i + 2] === 0x03) { EPBPositions.push(i + 2); i += 2; } else { i++; } } // If no Emulation Prevention Bytes were found just return the original // array if (EPBPositions.length === 0) { return data; } // Create a new array to hold the NAL unit data const newLength = length - EPBPositions.length; const newData = new Uint8Array(newLength); let sourceIndex = 0; for (i = 0; i < newLength; sourceIndex++, i++) { if (sourceIndex === EPBPositions[0]) { // Skip this byte sourceIndex++; // Remove this position index EPBPositions.shift(); } newData[i] = data[sourceIndex]; } return newData; } function parseEmsg(data) { const version = data[0]; let schemeIdUri = ''; let value = ''; let timeScale = 0; let presentationTimeDelta = 0; let presentationTime = 0; let eventDuration = 0; let id = 0; let offset = 0; if (version === 0) { while (bin2str(data.subarray(offset, offset + 1)) !== '\0') { schemeIdUri += bin2str(data.subarray(offset, offset + 1)); offset += 1; } schemeIdUri += bin2str(data.subarray(offset, offset + 1)); offset += 1; while (bin2str(data.subarray(offset, offset + 1)) !== '\0') { value += bin2str(data.subarray(offset, offset + 1)); offset += 1; } value += bin2str(data.subarray(offset, offset + 1)); offset += 1; timeScale = readUint32(data, 12); presentationTimeDelta = readUint32(data, 16); eventDuration = readUint32(data, 20); id = readUint32(data, 24); offset = 28; } else if (version === 1) { offset += 4; timeScale = readUint32(data, offset); offset += 4; const leftPresentationTime = readUint32(data, offset); offset += 4; const rightPresentationTime = readUint32(data, offset); offset += 4; presentationTime = 2 ** 32 * leftPresentationTime + rightPresentationTime; if (!isSafeInteger(presentationTime)) { presentationTime = Number.MAX_SAFE_INTEGER; logger.warn('Presentation time exceeds safe integer limit and wrapped to max safe integer in parsing emsg box'); } eventDuration = readUint32(data, offset); offset += 4; id = readUint32(data, offset); offset += 4; while (bin2str(data.subarray(offset, offset + 1)) !== '\0') { schemeIdUri += bin2str(data.subarray(offset, offset + 1)); offset += 1; } schemeIdUri += bin2str(data.subarray(offset, offset + 1)); offset += 1; while (bin2str(data.subarray(offset, offset + 1)) !== '\0') { value += bin2str(data.subarray(offset, offset + 1)); offset += 1; } value += bin2str(data.subarray(offset, offset + 1)); offset += 1; } const payload = data.subarray(offset, data.byteLength); return { schemeIdUri, value, timeScale, presentationTime, presentationTimeDelta, eventDuration, id, payload }; } class LevelKey { static clearKeyUriToKeyIdMap() { } constructor(method, uri, format, formatversions = [1], iv = null) { this.uri = void 0; this.method = void 0; this.keyFormat = void 0; this.keyFormatVersions = void 0; this.encrypted = void 0; this.isCommonEncryption = void 0; this.iv = null; this.key = null; this.keyId = null; this.pssh = null; this.method = method; this.uri = uri; this.keyFormat = format; this.keyFormatVersions = formatversions; this.iv = iv; this.encrypted = method ? method !== 'NONE' : false; this.isCommonEncryption = this.encrypted && !isFullSegmentEncryption(method); } isSupported() { // If it's Segment encryption or No encryption, just select that key system if (this.method) { if (isFullSegmentEncryption(this.method) || this.method === 'NONE') { return true; } if (this.keyFormat === 'identity') { // Maintain support for clear SAMPLE-AES with MPEG-3 TS return this.method === 'SAMPLE-AES'; } } return false; } getDecryptData(sn) { if (!this.encrypted || !this.uri) { return null; } if (isFullSegmentEncryption(this.method) && this.uri && !this.iv) { if (typeof sn !== 'number') { // We are fetching decryption data for a initialization segment // If the segment was encrypted with AES-128/256 // It must have an IV defined. We cannot substitute the Segment Number in. logger.warn(`missing IV for initialization segment with method="${this.method}" - compliance issue`); // Explicitly set sn to resulting value from implicit conversions 'initSegment' values for IV generation. sn = 0; } const iv = createInitializationVector(sn); const decryptdata = new LevelKey(this.method, this.uri, 'identity', this.keyFormatVersions, iv); return decryptdata; } { return this; } } } function createInitializationVector(segmentNumber) { const uint8View = new Uint8Array(16); for (let i = 12; i < 16; i++) { uint8View[i] = segmentNumber >> 8 * (15 - i) & 0xff; } return uint8View; } /** * MediaSource helper */ function getMediaSource(preferManagedMediaSource = true) { if (typeof self === 'undefined') return undefined; const mms = (preferManagedMediaSource || !self.MediaSource) && self.ManagedMediaSource; return mms || self.MediaSource || self.WebKitMediaSource; } // from http://mp4ra.org/codecs.html // values indicate codec selection preference (lower is higher priority) const sampleEntryCodesISO = { audio: { a3ds: 1, 'ac-3': 0.95, 'ac-4': 1, alac: 0.9, alaw: 1, dra1: 1, 'dts+': 1, 'dts-': 1, dtsc: 1, dtse: 1, dtsh: 1, 'ec-3': 0.9, enca: 1, fLaC: 0.9, // MP4-RA listed codec entry for FLAC flac: 0.9, // legacy browser codec name for FLAC FLAC: 0.9, // some manifests may list "FLAC" with Apple's tools g719: 1, g726: 1, m4ae: 1, mha1: 1, mha2: 1, mhm1: 1, mhm2: 1, mlpa: 1, mp4a: 1, 'raw ': 1, Opus: 1, opus: 1, // browsers expect this to be lowercase despite MP4RA says 'Opus' samr: 1, sawb: 1, sawp: 1, sevc: 1, sqcp: 1, ssmv: 1, twos: 1, ulaw: 1 }, video: { avc1: 1, avc2: 1, avc3: 1, avc4: 1, avcp: 1, av01: 0.8, drac: 1, dva1: 1, dvav: 1, dvh1: 0.7, dvhe: 0.7, encv: 1, hev1: 0.75, hvc1: 0.75, mjp2: 1, mp4v: 1, mvc1: 1, mvc2: 1, mvc3: 1, mvc4: 1, resv: 1, rv60: 1, s263: 1, svc1: 1, svc2: 1, 'vc-1': 1, vp08: 1, vp09: 0.9 }, text: { stpp: 1, wvtt: 1 } }; function isCodecType(codec, type) { const typeCodes = sampleEntryCodesISO[type]; return !!typeCodes && !!typeCodes[codec.slice(0, 4)]; } function areCodecsMediaSourceSupported(codecs, type, preferManagedMediaSource = true) { return !codecs.split(',').some(codec => !isCodecMediaSourceSupported(codec, type, preferManagedMediaSource)); } function isCodecMediaSourceSupported(codec, type, preferManagedMediaSource = true) { var _MediaSource$isTypeSu; const MediaSource = getMediaSource(preferManagedMediaSource); return (_MediaSource$isTypeSu = MediaSource == null ? void 0 : MediaSource.isTypeSupported(mimeTypeForCodec(codec, type))) != null ? _MediaSource$isTypeSu : false; } function mimeTypeForCodec(codec, type) { return `${type}/mp4;codecs="${codec}"`; } function videoCodecPreferenceValue(videoCodec) { if (videoCodec) { const fourCC = videoCodec.substring(0, 4); return sampleEntryCodesISO.video[fourCC]; } return 2; } function codecsSetSelectionPreferenceValue(codecSet) { return codecSet.split(',').reduce((num, fourCC) => { const preferenceValue = sampleEntryCodesISO.video[fourCC]; if (preferenceValue) { return (preferenceValue * 2 + num) / (num ? 3 : 2); } return (sampleEntryCodesISO.audio[fourCC] + num) / (num ? 2 : 1); }, 0); } const CODEC_COMPATIBLE_NAMES = {}; function getCodecCompatibleNameLower(lowerCaseCodec, preferManagedMediaSource = true) { if (CODEC_COMPATIBLE_NAMES[lowerCaseCodec]) { return CODEC_COMPATIBLE_NAMES[lowerCaseCodec]; } const codecsToCheck = { // Idealy fLaC and Opus would be first (spec-compliant) but // some browsers will report that fLaC is supported then fail. // see: https://bugs.chromium.org/p/chromium/issues/detail?id=1422728 flac: ['flac', 'fLaC', 'FLAC'], opus: ['opus', 'Opus'], // Replace audio codec info if browser does not support mp4a.40.34, // and demuxer can fallback to 'audio/mpeg' or 'audio/mp4;codecs="mp3"' 'mp4a.40.34': ['mp3'] }[lowerCaseCodec]; for (let i = 0; i < codecsToCheck.length; i++) { var _getMediaSource; if (isCodecMediaSourceSupported(codecsToCheck[i], 'audio', preferManagedMediaSource)) { CODEC_COMPATIBLE_NAMES[lowerCaseCodec] = codecsToCheck[i]; return codecsToCheck[i]; } else if (codecsToCheck[i] === 'mp3' && (_getMediaSource = getMediaSource(preferManagedMediaSource)) != null && _getMediaSource.isTypeSupported('audio/mpeg')) { return ''; } } return lowerCaseCodec; } const AUDIO_CODEC_REGEXP = /flac|opus|mp4a\.40\.34/i; function getCodecCompatibleName(codec, preferManagedMediaSource = true) { return codec.replace(AUDIO_CODEC_REGEXP, m => getCodecCompatibleNameLower(m.toLowerCase(), preferManagedMediaSource)); } function pickMostCompleteCodecName(parsedCodec, levelCodec) { // Parsing of mp4a codecs strings in mp4-tools from media is incomplete as of d8c6c7a // so use level codec is parsed codec is unavailable or incomplete if (parsedCodec && parsedCodec !== 'mp4a') { return parsedCodec; } return levelCodec; } function convertAVC1ToAVCOTI(codec) { // Convert avc1 codec string from RFC-4281 to RFC-6381 for MediaSource.isTypeSupported const avcdata = codec.split('.'); if (avcdata.length > 2) { let result = avcdata.shift() + '.'; result += parseInt(avcdata.shift()).toString(16); result += ('000' + parseInt(avcdata.shift()).toString(16)).slice(-4); return result; } return codec; } function getM2TSSupportedAudioTypes(preferManagedMediaSource) { const MediaSource = getMediaSource(preferManagedMediaSource) || { isTypeSupported: () => false }; return { mpeg: MediaSource.isTypeSupported('audio/mpeg'), mp3: MediaSource.isTypeSupported('audio/mp4; codecs="mp3"'), ac3: false }; } const MASTER_PLAYLIST_REGEX = /#EXT-X-STREAM-INF:([^\r\n]*)(?:[\r\n](?:#[^\r\n]*)?)*([^\r\n]+)|#EXT-X-(SESSION-DATA|SESSION-KEY|DEFINE|CONTENT-STEERING|START):([^\r\n]*)[\r\n]+/g; const MASTER_PLAYLIST_MEDIA_REGEX = /#EXT-X-MEDIA:(.*)/g; const IS_MEDIA_PLAYLIST = /^#EXT(?:INF|-X-TARGETDURATION):/m; // Handle empty Media Playlist (first EXTINF not signaled, but TARGETDURATION present) const LEVEL_PLAYLIST_REGEX_FAST = new RegExp([/#EXTINF:\s*(\d*(?:\.\d+)?)(?:,(.*)\s+)?/.source, // duration (#EXTINF:,), group 1 => duration, group 2 => title /(?!#) *(\S[\S ]*)/.source, // segment URI, group 3 => the URI (note newline is not eaten) /#EXT-X-BYTERANGE:*(.+)/.source, // next segment's byterange, group 4 => range spec (x@y) /#EXT-X-PROGRAM-DATE-TIME:(.+)/.source, // next segment's program date/time group 5 => the datetime spec /#.*/.source // All other non-segment oriented tags will match with all groups empty ].join('|'), 'g'); const LEVEL_PLAYLIST_REGEX_SLOW = new RegExp([/#(EXTM3U)/.source, /#EXT-X-(DATERANGE|DEFINE|KEY|MAP|PART|PART-INF|PLAYLIST-TYPE|PRELOAD-HINT|RENDITION-REPORT|SERVER-CONTROL|SKIP|START):(.+)/.source, /#EXT-X-(BITRATE|DISCONTINUITY-SEQUENCE|MEDIA-SEQUENCE|TARGETDURATION|VERSION): *(\d+)/.source, /#EXT-X-(DISCONTINUITY|ENDLIST|GAP|INDEPENDENT-SEGMENTS)/.source, /(#)([^:]*):(.*)/.source, /(#)(.*)(?:.*)\r?\n?/.source].join('|')); class M3U8Parser { static findGroup(groups, mediaGroupId) { for (let i = 0; i < groups.length; i++) { const group = groups[i]; if (group.id === mediaGroupId) { return group; } } } static resolve(url, baseUrl) { return urlToolkitExports.buildAbsoluteURL(baseUrl, url, { alwaysNormalize: true }); } static isMediaPlaylist(str) { return IS_MEDIA_PLAYLIST.test(str); } static parseMasterPlaylist(string, baseurl) { const hasVariableRefs = false; const parsed = { contentSteering: null, levels: [], playlistParsingError: null, sessionData: null, sessionKeys: null, startTimeOffset: null, variableList: null, hasVariableRefs }; const levelsWithKnownCodecs = []; MASTER_PLAYLIST_REGEX.lastIndex = 0; let result; while ((result = MASTER_PLAYLIST_REGEX.exec(string)) != null) { if (result[1]) { var _level$unknownCodecs; // '#EXT-X-STREAM-INF' is found, parse level tag in group 1 const attrs = new AttrList(result[1]); const uri = result[2]; const level = { attrs, bitrate: attrs.decimalInteger('BANDWIDTH') || attrs.decimalInteger('AVERAGE-BANDWIDTH'), name: attrs.NAME, url: M3U8Parser.resolve(uri, baseurl) }; const resolution = attrs.decimalResolution('RESOLUTION'); if (resolution) { level.width = resolution.width; level.height = resolution.height; } setCodecs(attrs.CODECS, level); if (!((_level$unknownCodecs = level.unknownCodecs) != null && _level$unknownCodecs.length)) { levelsWithKnownCodecs.push(level); } parsed.levels.push(level); } else if (result[3]) { const tag = result[3]; const attributes = result[4]; switch (tag) { case 'SESSION-DATA': { // #EXT-X-SESSION-DATA const sessionAttrs = new AttrList(attributes); const dataId = sessionAttrs['DATA-ID']; if (dataId) { if (parsed.sessionData === null) { parsed.sessionData = {}; } parsed.sessionData[dataId] = sessionAttrs; } break; } case 'SESSION-KEY': { // #EXT-X-SESSION-KEY const sessionKey = parseKey(attributes, baseurl); if (sessionKey.encrypted && sessionKey.isSupported()) { if (parsed.sessionKeys === null) { parsed.sessionKeys = []; } parsed.sessionKeys.push(sessionKey); } else { logger.warn(`[Keys] Ignoring invalid EXT-X-SESSION-KEY tag: "${attributes}"`); } break; } case 'DEFINE': { break; } case 'CONTENT-STEERING': { // #EXT-X-CONTENT-STEERING const contentSteeringAttributes = new AttrList(attributes); parsed.contentSteering = { uri: M3U8Parser.resolve(contentSteeringAttributes['SERVER-URI'], baseurl), pathwayId: contentSteeringAttributes['PATHWAY-ID'] || '.' }; break; } case 'START': { // #EXT-X-START parsed.startTimeOffset = parseStartTimeOffset(attributes); break; } } } } // Filter out levels with unknown codecs if it does not remove all levels const stripUnknownCodecLevels = levelsWithKnownCodecs.length > 0 && levelsWithKnownCodecs.length < parsed.levels.length; parsed.levels = stripUnknownCodecLevels ? levelsWithKnownCodecs : parsed.levels; if (parsed.levels.length === 0) { parsed.playlistParsingError = new Error('no levels found in manifest'); } return parsed; } static parseMasterPlaylistMedia(string, baseurl, parsed) { let result; const results = {}; const levels = parsed.levels; const groupsByType = { AUDIO: levels.map(level => ({ id: level.attrs.AUDIO, audioCodec: level.audioCodec })), SUBTITLES: levels.map(level => ({ id: level.attrs.SUBTITLES, textCodec: level.textCodec })), 'CLOSED-CAPTIONS': [] }; let id = 0; MASTER_PLAYLIST_MEDIA_REGEX.lastIndex = 0; while ((result = MASTER_PLAYLIST_MEDIA_REGEX.exec(string)) !== null) { const attrs = new AttrList(result[1]); const type = attrs.TYPE; if (type) { const groups = groupsByType[type]; const medias = results[type] || []; results[type] = medias; const lang = attrs.LANGUAGE; const assocLang = attrs['ASSOC-LANGUAGE']; const channels = attrs.CHANNELS; const characteristics = attrs.CHARACTERISTICS; const instreamId = attrs['INSTREAM-ID']; const media = { attrs, bitrate: 0, id: id++, groupId: attrs['GROUP-ID'] || '', name: attrs.NAME || lang || '', type, default: attrs.bool('DEFAULT'), autoselect: attrs.bool('AUTOSELECT'), forced: attrs.bool('FORCED'), lang, url: attrs.URI ? M3U8Parser.resolve(attrs.URI, baseurl) : '' }; if (assocLang) { media.assocLang = assocLang; } if (channels) { media.channels = channels; } if (characteristics) { media.characteristics = characteristics; } if (instreamId) { media.instreamId = instreamId; } if (groups != null && groups.length) { // If there are audio or text groups signalled in the manifest, let's look for a matching codec string for this track // If we don't find the track signalled, lets use the first audio groups codec we have // Acting as a best guess const groupCodec = M3U8Parser.findGroup(groups, media.groupId) || groups[0]; assignCodec(media, groupCodec, 'audioCodec'); assignCodec(media, groupCodec, 'textCodec'); } medias.push(media); } } return results; } static parseLevelPlaylist(string, baseurl, id, type, levelUrlId, multivariantVariableList) { const level = new LevelDetails(baseurl); const fragments = level.fragments; // The most recent init segment seen (applies to all subsequent segments) let currentInitSegment = null; let currentSN = 0; let currentPart = 0; let totalduration = 0; let discontinuityCounter = 0; let prevFrag = null; let frag = new Fragment(type, baseurl); let result; let i; let levelkeys; let firstPdtIndex = -1; let createNextFrag = false; let nextByteRange = null; LEVEL_PLAYLIST_REGEX_FAST.lastIndex = 0; level.m3u8 = string; level.hasVariableRefs = false; while ((result = LEVEL_PLAYLIST_REGEX_FAST.exec(string)) !== null) { if (createNextFrag) { createNextFrag = false; frag = new Fragment(type, baseurl); // setup the next fragment for part loading frag.start = totalduration; frag.sn = currentSN; frag.cc = discontinuityCounter; frag.level = id; if (currentInitSegment) { frag.initSegment = currentInitSegment; frag.rawProgramDateTime = currentInitSegment.rawProgramDateTime; currentInitSegment.rawProgramDateTime = null; if (nextByteRange) { frag.setByteRange(nextByteRange); nextByteRange = null; } } } const duration = result[1]; if (duration) { // INF frag.duration = parseFloat(duration); // avoid sliced strings https://github.com/video-dev/hls.js/issues/939 const title = (' ' + result[2]).slice(1); frag.title = title || null; frag.tagList.push(title ? ['INF', duration, title] : ['INF', duration]); } else if (result[3]) { // url if (isFiniteNumber(frag.duration)) { frag.start = totalduration; if (levelkeys) { setFragLevelKeys(frag, levelkeys, level); } frag.sn = currentSN; frag.level = id; frag.cc = discontinuityCounter; fragments.push(frag); // avoid sliced strings https://github.com/video-dev/hls.js/issues/939 const uri = (' ' + result[3]).slice(1); frag.relurl = uri; assignProgramDateTime(frag, prevFrag); prevFrag = frag; totalduration += frag.duration; currentSN++; currentPart = 0; createNextFrag = true; } } else if (result[4]) { // X-BYTERANGE const data = (' ' + result[4]).slice(1); if (prevFrag) { frag.setByteRange(data, prevFrag); } else { frag.setByteRange(data); } } else if (result[5]) { // PROGRAM-DATE-TIME // avoid sliced strings https://github.com/video-dev/hls.js/issues/939 frag.rawProgramDateTime = (' ' + result[5]).slice(1); frag.tagList.push(['PROGRAM-DATE-TIME', frag.rawProgramDateTime]); if (firstPdtIndex === -1) { firstPdtIndex = fragments.length; } } else { result = result[0].match(LEVEL_PLAYLIST_REGEX_SLOW); if (!result) { logger.warn('No matches on slow regex match for level playlist!'); continue; } for (i = 1; i < result.length; i++) { if (typeof result[i] !== 'undefined') { break; } } // avoid sliced strings https://github.com/video-dev/hls.js/issues/939 const tag = (' ' + result[i]).slice(1); const value1 = (' ' + result[i + 1]).slice(1); const value2 = result[i + 2] ? (' ' + result[i + 2]).slice(1) : ''; switch (tag) { case 'PLAYLIST-TYPE': level.type = value1.toUpperCase(); break; case 'MEDIA-SEQUENCE': currentSN = level.startSN = parseInt(value1); break; case 'SKIP': { const skipAttrs = new AttrList(value1); const skippedSegments = skipAttrs.decimalInteger('SKIPPED-SEGMENTS'); if (isFiniteNumber(skippedSegments)) { level.skippedSegments = skippedSegments; // This will result in fragments[] containing undefined values, which we will fill in with `mergeDetails` for (let _i = skippedSegments; _i--;) { fragments.unshift(null); } currentSN += skippedSegments; } const recentlyRemovedDateranges = skipAttrs.enumeratedString('RECENTLY-REMOVED-DATERANGES'); if (recentlyRemovedDateranges) { level.recentlyRemovedDateranges = recentlyRemovedDateranges.split('\t'); } break; } case 'TARGETDURATION': level.targetduration = Math.max(parseInt(value1), 1); break; case 'VERSION': level.version = parseInt(value1); break; case 'INDEPENDENT-SEGMENTS': case 'EXTM3U': break; case 'ENDLIST': level.live = false; break; case '#': if (value1 || value2) { frag.tagList.push(value2 ? [value1, value2] : [value1]); } break; case 'DISCONTINUITY': discontinuityCounter++; frag.tagList.push(['DIS']); break; case 'GAP': frag.gap = true; frag.tagList.push([tag]); break; case 'BITRATE': frag.tagList.push([tag, value1]); break; case 'DATERANGE': { const dateRangeAttr = new AttrList(value1); const dateRange = new DateRange(dateRangeAttr, level.dateRanges[dateRangeAttr.ID]); if (dateRange.isValid || level.skippedSegments) { level.dateRanges[dateRange.id] = dateRange; } else { logger.warn(`Ignoring invalid DATERANGE tag: "${value1}"`); } // Add to fragment tag list for backwards compatibility (< v1.2.0) frag.tagList.push(['EXT-X-DATERANGE', value1]); break; } case 'DEFINE': { break; } case 'DISCONTINUITY-SEQUENCE': discontinuityCounter = parseInt(value1); break; case 'KEY': { const levelKey = parseKey(value1, baseurl); if (levelKey.isSupported()) { if (levelKey.method === 'NONE') { levelkeys = undefined; break; } if (!levelkeys) { levelkeys = {}; } if (levelkeys[levelKey.keyFormat]) { levelkeys = _extends({}, levelkeys); } levelkeys[levelKey.keyFormat] = levelKey; } else { logger.warn(`[Keys] Ignoring invalid EXT-X-KEY tag: "${value1}"`); } break; } case 'START': level.startTimeOffset = parseStartTimeOffset(value1); break; case 'MAP': { const mapAttrs = new AttrList(value1); if (frag.duration) { // Initial segment tag is after segment duration tag. // #EXTINF: 6.0 // #EXT-X-MAP:URI="init.mp4 const init = new Fragment(type, baseurl); setInitSegment(init, mapAttrs, id, levelkeys); currentInitSegment = init; frag.initSegment = currentInitSegment; if (currentInitSegment.rawProgramDateTime && !frag.rawProgramDateTime) { frag.rawProgramDateTime = currentInitSegment.rawProgramDateTime; } } else { // Initial segment tag is before segment duration tag // Handle case where EXT-X-MAP is declared after EXT-X-BYTERANGE const end = frag.byteRangeEndOffset; if (end) { const start = frag.byteRangeStartOffset; nextByteRange = `${end - start}@${start}`; } else { nextByteRange = null; } setInitSegment(frag, mapAttrs, id, levelkeys); currentInitSegment = frag; createNextFrag = true; } break; } case 'SERVER-CONTROL': { const serverControlAttrs = new AttrList(value1); level.canBlockReload = serverControlAttrs.bool('CAN-BLOCK-RELOAD'); level.canSkipUntil = serverControlAttrs.optionalFloat('CAN-SKIP-UNTIL', 0); level.canSkipDateRanges = level.canSkipUntil > 0 && serverControlAttrs.bool('CAN-SKIP-DATERANGES'); level.partHoldBack = serverControlAttrs.optionalFloat('PART-HOLD-BACK', 0); level.holdBack = serverControlAttrs.optionalFloat('HOLD-BACK', 0); break; } case 'PART-INF': { const partInfAttrs = new AttrList(value1); level.partTarget = partInfAttrs.decimalFloatingPoint('PART-TARGET'); break; } case 'PART': { let partList = level.partList; if (!partList) { partList = level.partList = []; } const previousFragmentPart = currentPart > 0 ? partList[partList.length - 1] : undefined; const index = currentPart++; const partAttrs = new AttrList(value1); const part = new Part(partAttrs, frag, baseurl, index, previousFragmentPart); partList.push(part); frag.duration += part.duration; break; } case 'PRELOAD-HINT': { const preloadHintAttrs = new AttrList(value1); level.preloadHint = preloadHintAttrs; break; } case 'RENDITION-REPORT': { const renditionReportAttrs = new AttrList(value1); level.renditionReports = level.renditionReports || []; level.renditionReports.push(renditionReportAttrs); break; } default: logger.warn(`line parsed but not handled: ${result}`); break; } } } if (prevFrag && !prevFrag.relurl) { fragments.pop(); totalduration -= prevFrag.duration; if (level.partList) { level.fragmentHint = prevFrag; } } else if (level.partList) { assignProgramDateTime(frag, prevFrag); frag.cc = discontinuityCounter; level.fragmentHint = frag; if (levelkeys) { setFragLevelKeys(frag, levelkeys, level); } } const fragmentLength = fragments.length; const firstFragment = fragments[0]; const lastFragment = fragments[fragmentLength - 1]; totalduration += level.skippedSegments * level.targetduration; if (totalduration > 0 && fragmentLength && lastFragment) { level.averagetargetduration = totalduration / fragmentLength; const lastSn = lastFragment.sn; level.endSN = lastSn !== 'initSegment' ? lastSn : 0; if (!level.live) { lastFragment.endList = true; } if (firstFragment) { level.startCC = firstFragment.cc; } } else { level.endSN = 0; level.startCC = 0; } if (level.fragmentHint) { totalduration += level.fragmentHint.duration; } level.totalduration = totalduration; level.endCC = discontinuityCounter; /** * Backfill any missing PDT values * "If the first EXT-X-PROGRAM-DATE-TIME tag in a Playlist appears after * one or more Media Segment URIs, the client SHOULD extrapolate * backward from that tag (using EXTINF durations and/or media * timestamps) to associate dates with those segments." * We have already extrapolated forward, but all fragments up to the first instance of PDT do not have their PDTs * computed. */ if (firstPdtIndex > 0) { backfillProgramDateTimes(fragments, firstPdtIndex); } return level; } } function parseKey(keyTagAttributes, baseurl, parsed) { var _keyAttrs$METHOD, _keyAttrs$KEYFORMAT; // https://tools.ietf.org/html/rfc8216#section-4.3.2.4 const keyAttrs = new AttrList(keyTagAttributes); const decryptmethod = (_keyAttrs$METHOD = keyAttrs.METHOD) != null ? _keyAttrs$METHOD : ''; const decrypturi = keyAttrs.URI; const decryptiv = keyAttrs.hexadecimalInteger('IV'); const decryptkeyformatversions = keyAttrs.KEYFORMATVERSIONS; // From RFC: This attribute is OPTIONAL; its absence indicates an implicit value of "identity". const decryptkeyformat = (_keyAttrs$KEYFORMAT = keyAttrs.KEYFORMAT) != null ? _keyAttrs$KEYFORMAT : 'identity'; if (decrypturi && keyAttrs.IV && !decryptiv) { logger.error(`Invalid IV: ${keyAttrs.IV}`); } // If decrypturi is a URI with a scheme, then baseurl will be ignored // No uri is allowed when METHOD is NONE const resolvedUri = decrypturi ? M3U8Parser.resolve(decrypturi, baseurl) : ''; const keyFormatVersions = (decryptkeyformatversions ? decryptkeyformatversions : '1').split('/').map(Number).filter(Number.isFinite); return new LevelKey(decryptmethod, resolvedUri, decryptkeyformat, keyFormatVersions, decryptiv); } function parseStartTimeOffset(startAttributes) { const startAttrs = new AttrList(startAttributes); const startTimeOffset = startAttrs.decimalFloatingPoint('TIME-OFFSET'); if (isFiniteNumber(startTimeOffset)) { return startTimeOffset; } return null; } function setCodecs(codecsAttributeValue, level) { let codecs = (codecsAttributeValue || '').split(/[ ,]+/).filter(c => c); ['video', 'audio', 'text'].forEach(type => { const filtered = codecs.filter(codec => isCodecType(codec, type)); if (filtered.length) { // Comma separated list of all codecs for type level[`${type}Codec`] = filtered.join(','); // Remove known codecs so that only unknownCodecs are left after iterating through each type codecs = codecs.filter(codec => filtered.indexOf(codec) === -1); } }); level.unknownCodecs = codecs; } function assignCodec(media, groupItem, codecProperty) { const codecValue = groupItem[codecProperty]; if (codecValue) { media[codecProperty] = codecValue; } } function backfillProgramDateTimes(fragments, firstPdtIndex) { let fragPrev = fragments[firstPdtIndex]; for (let i = firstPdtIndex; i--;) { const frag = fragments[i]; // Exit on delta-playlist skipped segments if (!frag) { return; } frag.programDateTime = fragPrev.programDateTime - frag.duration * 1000; fragPrev = frag; } } function assignProgramDateTime(frag, prevFrag) { if (frag.rawProgramDateTime) { frag.programDateTime = Date.parse(frag.rawProgramDateTime); } else if (prevFrag != null && prevFrag.programDateTime) { frag.programDateTime = prevFrag.endProgramDateTime; } if (!isFiniteNumber(frag.programDateTime)) { frag.programDateTime = null; frag.rawProgramDateTime = null; } } function setInitSegment(frag, mapAttrs, id, levelkeys) { frag.relurl = mapAttrs.URI; if (mapAttrs.BYTERANGE) { frag.setByteRange(mapAttrs.BYTERANGE); } frag.level = id; frag.sn = 'initSegment'; if (levelkeys) { frag.levelkeys = levelkeys; } frag.initSegment = null; } function setFragLevelKeys(frag, levelkeys, level) { frag.levelkeys = levelkeys; const { encryptedFragments } = level; if ((!encryptedFragments.length || encryptedFragments[encryptedFragments.length - 1].levelkeys !== levelkeys) && Object.keys(levelkeys).some(format => levelkeys[format].isCommonEncryption)) { encryptedFragments.push(frag); } } var PlaylistContextType = { MANIFEST: "manifest", LEVEL: "level", AUDIO_TRACK: "audioTrack", SUBTITLE_TRACK: "subtitleTrack" }; var PlaylistLevelType = { MAIN: "main", AUDIO: "audio", SUBTITLE: "subtitle" }; function mapContextToLevelType(context) { const { type } = context; switch (type) { case PlaylistContextType.AUDIO_TRACK: return PlaylistLevelType.AUDIO; case PlaylistContextType.SUBTITLE_TRACK: return PlaylistLevelType.SUBTITLE; default: return PlaylistLevelType.MAIN; } } function getResponseUrl(response, context) { let url = response.url; // responseURL not supported on some browsers (it is used to detect URL redirection) // data-uri mode also not supported (but no need to detect redirection) if (url === undefined || url.indexOf('data:') === 0) { // fallback to initial URL url = context.url; } return url; } class PlaylistLoader { constructor(hls) { this.hls = void 0; this.loaders = Object.create(null); this.variableList = null; this.hls = hls; this.registerListeners(); } startLoad(startPosition) {} stopLoad() { this.destroyInternalLoaders(); } registerListeners() { const { hls } = this; hls.on(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.on(Events.LEVEL_LOADING, this.onLevelLoading, this); hls.on(Events.AUDIO_TRACK_LOADING, this.onAudioTrackLoading, this); hls.on(Events.SUBTITLE_TRACK_LOADING, this.onSubtitleTrackLoading, this); } unregisterListeners() { const { hls } = this; hls.off(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.off(Events.LEVEL_LOADING, this.onLevelLoading, this); hls.off(Events.AUDIO_TRACK_LOADING, this.onAudioTrackLoading, this); hls.off(Events.SUBTITLE_TRACK_LOADING, this.onSubtitleTrackLoading, this); } /** * Returns defaults or configured loader-type overloads (pLoader and loader config params) */ createInternalLoader(context) { const config = this.hls.config; const PLoader = config.pLoader; const Loader = config.loader; const InternalLoader = PLoader || Loader; const loader = new InternalLoader(config); this.loaders[context.type] = loader; return loader; } getInternalLoader(context) { return this.loaders[context.type]; } resetInternalLoader(contextType) { if (this.loaders[contextType]) { delete this.loaders[contextType]; } } /** * Call `destroy` on all internal loader instances mapped (one per context type) */ destroyInternalLoaders() { for (const contextType in this.loaders) { const loader = this.loaders[contextType]; if (loader) { loader.destroy(); } this.resetInternalLoader(contextType); } } destroy() { this.variableList = null; this.unregisterListeners(); this.destroyInternalLoaders(); } onManifestLoading(event, data) { const { url } = data; this.variableList = null; this.load({ id: null, level: 0, responseType: 'text', type: PlaylistContextType.MANIFEST, url, deliveryDirectives: null }); } onLevelLoading(event, data) { const { id, level, pathwayId, url, deliveryDirectives } = data; this.load({ id, level, pathwayId, responseType: 'text', type: PlaylistContextType.LEVEL, url, deliveryDirectives }); } onAudioTrackLoading(event, data) { const { id, groupId, url, deliveryDirectives } = data; this.load({ id, groupId, level: null, responseType: 'text', type: PlaylistContextType.AUDIO_TRACK, url, deliveryDirectives }); } onSubtitleTrackLoading(event, data) { const { id, groupId, url, deliveryDirectives } = data; this.load({ id, groupId, level: null, responseType: 'text', type: PlaylistContextType.SUBTITLE_TRACK, url, deliveryDirectives }); } load(context) { var _context$deliveryDire; const config = this.hls.config; // logger.debug(`[playlist-loader]: Loading playlist of type ${context.type}, level: ${context.level}, id: ${context.id}`); // Check if a loader for this context already exists let loader = this.getInternalLoader(context); if (loader) { const loaderContext = loader.context; if (loaderContext && loaderContext.url === context.url && loaderContext.level === context.level) { // same URL can't overlap logger.trace('[playlist-loader]: playlist request ongoing'); return; } logger.log(`[playlist-loader]: aborting previous loader for type: ${context.type}`); loader.abort(); } // apply different configs for retries depending on // context (manifest, level, audio/subs playlist) let loadPolicy; if (context.type === PlaylistContextType.MANIFEST) { loadPolicy = config.manifestLoadPolicy.default; } else { loadPolicy = _extends({}, config.playlistLoadPolicy.default, { timeoutRetry: null, errorRetry: null }); } loader = this.createInternalLoader(context); // Override level/track timeout for LL-HLS requests // (the default of 10000ms is counter productive to blocking playlist reload requests) if (isFiniteNumber((_context$deliveryDire = context.deliveryDirectives) == null ? void 0 : _context$deliveryDire.part)) { let levelDetails; if (context.type === PlaylistContextType.LEVEL && context.level !== null) { levelDetails = this.hls.levels[context.level].details; } else if (context.type === PlaylistContextType.AUDIO_TRACK && context.id !== null) { levelDetails = this.hls.audioTracks[context.id].details; } else if (context.type === PlaylistContextType.SUBTITLE_TRACK && context.id !== null) { levelDetails = this.hls.subtitleTracks[context.id].details; } if (levelDetails) { const partTarget = levelDetails.partTarget; const targetDuration = levelDetails.targetduration; if (partTarget && targetDuration) { const maxLowLatencyPlaylistRefresh = Math.max(partTarget * 3, targetDuration * 0.8) * 1000; loadPolicy = _extends({}, loadPolicy, { maxTimeToFirstByteMs: Math.min(maxLowLatencyPlaylistRefresh, loadPolicy.maxTimeToFirstByteMs), maxLoadTimeMs: Math.min(maxLowLatencyPlaylistRefresh, loadPolicy.maxTimeToFirstByteMs) }); } } } const legacyRetryCompatibility = loadPolicy.errorRetry || loadPolicy.timeoutRetry || {}; const loaderConfig = { loadPolicy, timeout: loadPolicy.maxLoadTimeMs, maxRetry: legacyRetryCompatibility.maxNumRetry || 0, retryDelay: legacyRetryCompatibility.retryDelayMs || 0, maxRetryDelay: legacyRetryCompatibility.maxRetryDelayMs || 0 }; const loaderCallbacks = { onSuccess: (response, stats, context, networkDetails) => { const loader = this.getInternalLoader(context); this.resetInternalLoader(context.type); const string = response.data; // Validate if it is an M3U8 at all if (string.indexOf('#EXTM3U') !== 0) { this.handleManifestParsingError(response, context, new Error('no EXTM3U delimiter'), networkDetails || null, stats); return; } stats.parsing.start = performance.now(); if (M3U8Parser.isMediaPlaylist(string)) { this.handleTrackOrLevelPlaylist(response, stats, context, networkDetails || null, loader); } else { this.handleMasterPlaylist(response, stats, context, networkDetails); } }, onError: (response, context, networkDetails, stats) => { this.handleNetworkError(context, networkDetails, false, response, stats); }, onTimeout: (stats, context, networkDetails) => { this.handleNetworkError(context, networkDetails, true, undefined, stats); } }; // logger.debug(`[playlist-loader]: Calling internal loader delegate for URL: ${context.url}`); loader.load(context, loaderConfig, loaderCallbacks); } handleMasterPlaylist(response, stats, context, networkDetails) { const hls = this.hls; const string = response.data; const url = getResponseUrl(response, context); const parsedResult = M3U8Parser.parseMasterPlaylist(string, url); if (parsedResult.playlistParsingError) { this.handleManifestParsingError(response, context, parsedResult.playlistParsingError, networkDetails, stats); return; } const { contentSteering, levels, sessionData, sessionKeys, startTimeOffset, variableList } = parsedResult; this.variableList = variableList; const { AUDIO: audioTracks = [], SUBTITLES: subtitles, 'CLOSED-CAPTIONS': captions } = M3U8Parser.parseMasterPlaylistMedia(string, url, parsedResult); if (audioTracks.length) { // check if we have found an audio track embedded in main playlist (audio track without URI attribute) const embeddedAudioFound = audioTracks.some(audioTrack => !audioTrack.url); // if no embedded audio track defined, but audio codec signaled in quality level, // we need to signal this main audio track this could happen with playlists with // alt audio rendition in which quality levels (main) // contains both audio+video. but with mixed audio track not signaled if (!embeddedAudioFound && levels[0].audioCodec && !levels[0].attrs.AUDIO) { logger.log('[playlist-loader]: audio codec signaled in quality level, but no embedded audio track signaled, create one'); audioTracks.unshift({ type: 'main', name: 'main', groupId: 'main', default: false, autoselect: false, forced: false, id: -1, attrs: new AttrList({}), bitrate: 0, url: '' }); } } hls.trigger(Events.MANIFEST_LOADED, { levels, audioTracks, subtitles, captions, contentSteering, url, stats, networkDetails, sessionData, sessionKeys, startTimeOffset, variableList }); } handleTrackOrLevelPlaylist(response, stats, context, networkDetails, loader) { const hls = this.hls; const { id, level, type } = context; const url = getResponseUrl(response, context); const levelUrlId = 0; const levelId = isFiniteNumber(level) ? level : isFiniteNumber(id) ? id : 0; const levelType = mapContextToLevelType(context); const levelDetails = M3U8Parser.parseLevelPlaylist(response.data, url, levelId, levelType, levelUrlId, this.variableList); // We have done our first request (Manifest-type) and receive // not a master playlist but a chunk-list (track/level) // We fire the manifest-loaded event anyway with the parsed level-details // by creating a single-level structure for it. if (type === PlaylistContextType.MANIFEST) { const singleLevel = { attrs: new AttrList({}), bitrate: 0, details: levelDetails, name: '', url }; hls.trigger(Events.MANIFEST_LOADED, { levels: [singleLevel], audioTracks: [], url, stats, networkDetails, sessionData: null, sessionKeys: null, contentSteering: null, startTimeOffset: null, variableList: null }); } // save parsing time stats.parsing.end = performance.now(); // extend the context with the new levelDetails property context.levelDetails = levelDetails; this.handlePlaylistLoaded(levelDetails, response, stats, context, networkDetails, loader); } handleManifestParsingError(response, context, error, networkDetails, stats) { this.hls.trigger(Events.ERROR, { type: ErrorTypes.NETWORK_ERROR, details: ErrorDetails.MANIFEST_PARSING_ERROR, fatal: context.type === PlaylistContextType.MANIFEST, url: response.url, err: error, error, reason: error.message, response, context, networkDetails, stats }); } handleNetworkError(context, networkDetails, timeout = false, response, stats) { let message = `A network ${timeout ? 'timeout' : 'error' + (response ? ' (status ' + response.code + ')' : '')} occurred while loading ${context.type}`; if (context.type === PlaylistContextType.LEVEL) { message += `: ${context.level} id: ${context.id}`; } else if (context.type === PlaylistContextType.AUDIO_TRACK || context.type === PlaylistContextType.SUBTITLE_TRACK) { message += ` id: ${context.id} group-id: "${context.groupId}"`; } const error = new Error(message); logger.warn(`[playlist-loader]: ${message}`); let details = ErrorDetails.UNKNOWN; let fatal = false; const loader = this.getInternalLoader(context); switch (context.type) { case PlaylistContextType.MANIFEST: details = timeout ? ErrorDetails.MANIFEST_LOAD_TIMEOUT : ErrorDetails.MANIFEST_LOAD_ERROR; fatal = true; break; case PlaylistContextType.LEVEL: details = timeout ? ErrorDetails.LEVEL_LOAD_TIMEOUT : ErrorDetails.LEVEL_LOAD_ERROR; fatal = false; break; case PlaylistContextType.AUDIO_TRACK: details = timeout ? ErrorDetails.AUDIO_TRACK_LOAD_TIMEOUT : ErrorDetails.AUDIO_TRACK_LOAD_ERROR; fatal = false; break; case PlaylistContextType.SUBTITLE_TRACK: details = timeout ? ErrorDetails.SUBTITLE_TRACK_LOAD_TIMEOUT : ErrorDetails.SUBTITLE_LOAD_ERROR; fatal = false; break; } if (loader) { this.resetInternalLoader(context.type); } const errorData = { type: ErrorTypes.NETWORK_ERROR, details, fatal, url: context.url, loader, context, error, networkDetails, stats }; if (response) { const url = (networkDetails == null ? void 0 : networkDetails.url) || context.url; errorData.response = _objectSpread2({ url, data: undefined }, response); } this.hls.trigger(Events.ERROR, errorData); } handlePlaylistLoaded(levelDetails, response, stats, context, networkDetails, loader) { const hls = this.hls; const { type, level, id, groupId, deliveryDirectives } = context; const url = getResponseUrl(response, context); const parent = mapContextToLevelType(context); const levelIndex = typeof context.level === 'number' && parent === PlaylistLevelType.MAIN ? level : undefined; if (!levelDetails.fragments.length) { const _error = new Error('No Segments found in Playlist'); hls.trigger(Events.ERROR, { type: ErrorTypes.NETWORK_ERROR, details: ErrorDetails.LEVEL_EMPTY_ERROR, fatal: false, url, error: _error, reason: _error.message, response, context, level: levelIndex, parent, networkDetails, stats }); return; } if (!levelDetails.targetduration) { levelDetails.playlistParsingError = new Error('Missing Target Duration'); } const error = levelDetails.playlistParsingError; if (error) { hls.trigger(Events.ERROR, { type: ErrorTypes.NETWORK_ERROR, details: ErrorDetails.LEVEL_PARSING_ERROR, fatal: false, url, error, reason: error.message, response, context, level: levelIndex, parent, networkDetails, stats }); return; } if (levelDetails.live && loader) { if (loader.getCacheAge) { levelDetails.ageHeader = loader.getCacheAge() || 0; } if (!loader.getCacheAge || isNaN(levelDetails.ageHeader)) { levelDetails.ageHeader = 0; } } switch (type) { case PlaylistContextType.MANIFEST: case PlaylistContextType.LEVEL: hls.trigger(Events.LEVEL_LOADED, { details: levelDetails, level: levelIndex || 0, id: id || 0, stats, networkDetails, deliveryDirectives }); break; case PlaylistContextType.AUDIO_TRACK: hls.trigger(Events.AUDIO_TRACK_LOADED, { details: levelDetails, id: id || 0, groupId: groupId || '', stats, networkDetails, deliveryDirectives }); break; case PlaylistContextType.SUBTITLE_TRACK: hls.trigger(Events.SUBTITLE_TRACK_LOADED, { details: levelDetails, id: id || 0, groupId: groupId || '', stats, networkDetails, deliveryDirectives }); break; } } } function sendAddTrackEvent(track, videoEl) { let event; try { event = new Event('addtrack'); } catch (err) { // for IE11 event = document.createEvent('Event'); event.initEvent('addtrack', false, false); } event.track = track; videoEl.dispatchEvent(event); } function clearCurrentCues(track) { // When track.mode is disabled, track.cues will be null. // To guarantee the removal of cues, we need to temporarily // change the mode to hidden const mode = track.mode; if (mode === 'disabled') { track.mode = 'hidden'; } if (track.cues) { for (let i = track.cues.length; i--;) { track.removeCue(track.cues[i]); } } if (mode === 'disabled') { track.mode = mode; } } function removeCuesInRange(track, start, end, predicate) { const mode = track.mode; if (mode === 'disabled') { track.mode = 'hidden'; } if (track.cues && track.cues.length > 0) { const cues = getCuesInRange(track.cues, start, end); for (let i = 0; i < cues.length; i++) { if (!predicate || predicate(cues[i])) { track.removeCue(cues[i]); } } } if (mode === 'disabled') { track.mode = mode; } } // Find first cue starting after given time. // Modified version of binary search O(log(n)). function getFirstCueIndexAfterTime(cues, time) { // If first cue starts after time, start there if (time < cues[0].startTime) { return 0; } // If the last cue ends before time there is no overlap const len = cues.length - 1; if (time > cues[len].endTime) { return -1; } let left = 0; let right = len; while (left <= right) { const mid = Math.floor((right + left) / 2); if (time < cues[mid].startTime) { right = mid - 1; } else if (time > cues[mid].startTime && left < len) { left = mid + 1; } else { // If it's not lower or higher, it must be equal. return mid; } } // At this point, left and right have swapped. // No direct match was found, left or right element must be the closest. Check which one has the smallest diff. return cues[left].startTime - time < time - cues[right].startTime ? left : right; } function getCuesInRange(cues, start, end) { const cuesFound = []; const firstCueInRange = getFirstCueIndexAfterTime(cues, start); if (firstCueInRange > -1) { for (let i = firstCueInRange, len = cues.length; i < len; i++) { const cue = cues[i]; if (cue.startTime >= start && cue.endTime <= end) { cuesFound.push(cue); } else if (cue.startTime > end) { return cuesFound; } } } return cuesFound; } var MetadataSchema = { audioId3: "org.id3", dateRange: "com.apple.quicktime.HLS", emsg: "https://aomedia.org/emsg/ID3" }; const MIN_CUE_DURATION = 0.25; function getCueClass() { if (typeof self === 'undefined') return undefined; return self.VTTCue || self.TextTrackCue; } function createCueWithDataFields(Cue, startTime, endTime, data, type) { let cue = new Cue(startTime, endTime, ''); try { cue.value = data; if (type) { cue.type = type; } } catch (e) { cue = new Cue(startTime, endTime, JSON.stringify(type ? _objectSpread2({ type }, data) : data)); } return cue; } // VTTCue latest draft allows an infinite duration, fallback // to MAX_VALUE if necessary const MAX_CUE_ENDTIME = (() => { const Cue = getCueClass(); try { Cue && new Cue(0, Number.POSITIVE_INFINITY, ''); } catch (e) { return Number.MAX_VALUE; } return Number.POSITIVE_INFINITY; })(); function dateRangeDateToTimelineSeconds(date, offset) { return date.getTime() / 1000 - offset; } function hexToArrayBuffer(str) { return Uint8Array.from(str.replace(/^0x/, '').replace(/([\da-fA-F]{2}) ?/g, '0x$1 ').replace(/ +$/, '').split(' ')).buffer; } class ID3TrackController { constructor(hls) { this.hls = void 0; this.id3Track = null; this.media = null; this.dateRangeCuesAppended = {}; this.hls = hls; this._registerListeners(); } destroy() { this._unregisterListeners(); this.id3Track = null; this.media = null; this.dateRangeCuesAppended = {}; // @ts-ignore this.hls = null; } _registerListeners() { const { hls } = this; hls.on(Events.MEDIA_ATTACHED, this.onMediaAttached, this); hls.on(Events.MEDIA_DETACHING, this.onMediaDetaching, this); hls.on(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.on(Events.FRAG_PARSING_METADATA, this.onFragParsingMetadata, this); hls.on(Events.BUFFER_FLUSHING, this.onBufferFlushing, this); hls.on(Events.LEVEL_UPDATED, this.onLevelUpdated, this); } _unregisterListeners() { const { hls } = this; hls.off(Events.MEDIA_ATTACHED, this.onMediaAttached, this); hls.off(Events.MEDIA_DETACHING, this.onMediaDetaching, this); hls.off(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.off(Events.FRAG_PARSING_METADATA, this.onFragParsingMetadata, this); hls.off(Events.BUFFER_FLUSHING, this.onBufferFlushing, this); hls.off(Events.LEVEL_UPDATED, this.onLevelUpdated, this); } // Add ID3 metatadata text track. onMediaAttached(event, data) { this.media = data.media; } onMediaDetaching() { if (!this.id3Track) { return; } clearCurrentCues(this.id3Track); this.id3Track = null; this.media = null; this.dateRangeCuesAppended = {}; } onManifestLoading() { this.dateRangeCuesAppended = {}; } createTrack(media) { const track = this.getID3Track(media.textTracks); track.mode = 'hidden'; return track; } getID3Track(textTracks) { if (!this.media) { return; } for (let i = 0; i < textTracks.length; i++) { const textTrack = textTracks[i]; if (textTrack.kind === 'metadata' && textTrack.label === 'id3') { // send 'addtrack' when reusing the textTrack for metadata, // same as what we do for captions sendAddTrackEvent(textTrack, this.media); return textTrack; } } return this.media.addTextTrack('metadata', 'id3'); } onFragParsingMetadata(event, data) { if (!this.media) { return; } const { hls: { config: { enableEmsgMetadataCues, enableID3MetadataCues } } } = this; if (!enableEmsgMetadataCues && !enableID3MetadataCues) { return; } const { samples } = data; // create track dynamically if (!this.id3Track) { this.id3Track = this.createTrack(this.media); } const Cue = getCueClass(); if (!Cue) { return; } for (let i = 0; i < samples.length; i++) { const type = samples[i].type; if (type === MetadataSchema.emsg && !enableEmsgMetadataCues || !enableID3MetadataCues) { continue; } const frames = getID3Frames(samples[i].data); if (frames) { const startTime = samples[i].pts; let endTime = startTime + samples[i].duration; if (endTime > MAX_CUE_ENDTIME) { endTime = MAX_CUE_ENDTIME; } const timeDiff = endTime - startTime; if (timeDiff <= 0) { endTime = startTime + MIN_CUE_DURATION; } for (let j = 0; j < frames.length; j++) { const frame = frames[j]; // Safari doesn't put the timestamp frame in the TextTrack if (!isTimeStampFrame(frame)) { // add a bounds to any unbounded cues this.updateId3CueEnds(startTime, type); const cue = createCueWithDataFields(Cue, startTime, endTime, frame, type); if (cue) { this.id3Track.addCue(cue); } } } } } } updateId3CueEnds(startTime, type) { var _this$id3Track; const cues = (_this$id3Track = this.id3Track) == null ? void 0 : _this$id3Track.cues; if (cues) { for (let i = cues.length; i--;) { const cue = cues[i]; if (cue.type === type && cue.startTime < startTime && cue.endTime === MAX_CUE_ENDTIME) { cue.endTime = startTime; } } } } onBufferFlushing(event, { startOffset, endOffset, type }) { const { id3Track, hls } = this; if (!hls) { return; } const { config: { enableEmsgMetadataCues, enableID3MetadataCues } } = hls; if (id3Track && (enableEmsgMetadataCues || enableID3MetadataCues)) { let predicate; if (type === 'audio') { predicate = cue => cue.type === MetadataSchema.audioId3 && enableID3MetadataCues; } else if (type === 'video') { predicate = cue => cue.type === MetadataSchema.emsg && enableEmsgMetadataCues; } else { predicate = cue => cue.type === MetadataSchema.audioId3 && enableID3MetadataCues || cue.type === MetadataSchema.emsg && enableEmsgMetadataCues; } removeCuesInRange(id3Track, startOffset, endOffset, predicate); } } onLevelUpdated(event, { details }) { if (!this.media || !details.hasProgramDateTime || !this.hls.config.enableDateRangeMetadataCues) { return; } const { dateRangeCuesAppended, id3Track } = this; const { dateRanges } = details; const ids = Object.keys(dateRanges); // Remove cues from track not found in details.dateRanges if (id3Track) { const idsToRemove = Object.keys(dateRangeCuesAppended).filter(id => !ids.includes(id)); for (let i = idsToRemove.length; i--;) { const id = idsToRemove[i]; Object.keys(dateRangeCuesAppended[id].cues).forEach(key => { id3Track.removeCue(dateRangeCuesAppended[id].cues[key]); }); delete dateRangeCuesAppended[id]; } } // Exit if the playlist does not have Date Ranges or does not have Program Date Time const lastFragment = details.fragments[details.fragments.length - 1]; if (ids.length === 0 || !isFiniteNumber(lastFragment == null ? void 0 : lastFragment.programDateTime)) { return; } if (!this.id3Track) { this.id3Track = this.createTrack(this.media); } const dateTimeOffset = lastFragment.programDateTime / 1000 - lastFragment.start; const Cue = getCueClass(); for (let i = 0; i < ids.length; i++) { const id = ids[i]; const dateRange = dateRanges[id]; const startTime = dateRangeDateToTimelineSeconds(dateRange.startDate, dateTimeOffset); // Process DateRanges to determine end-time (known DURATION, END-DATE, or END-ON-NEXT) const appendedDateRangeCues = dateRangeCuesAppended[id]; const cues = (appendedDateRangeCues == null ? void 0 : appendedDateRangeCues.cues) || {}; let durationKnown = (appendedDateRangeCues == null ? void 0 : appendedDateRangeCues.durationKnown) || false; let endTime = MAX_CUE_ENDTIME; const endDate = dateRange.endDate; if (endDate) { endTime = dateRangeDateToTimelineSeconds(endDate, dateTimeOffset); durationKnown = true; } else if (dateRange.endOnNext && !durationKnown) { const nextDateRangeWithSameClass = ids.reduce((candidateDateRange, id) => { if (id !== dateRange.id) { const otherDateRange = dateRanges[id]; if (otherDateRange.class === dateRange.class && otherDateRange.startDate > dateRange.startDate && (!candidateDateRange || dateRange.startDate < candidateDateRange.startDate)) { return otherDateRange; } } return candidateDateRange; }, null); if (nextDateRangeWithSameClass) { endTime = dateRangeDateToTimelineSeconds(nextDateRangeWithSameClass.startDate, dateTimeOffset); durationKnown = true; } } // Create TextTrack Cues for each MetadataGroup Item (select DateRange attribute) // This is to emulate Safari HLS playback handling of DateRange tags const attributes = Object.keys(dateRange.attr); for (let j = 0; j < attributes.length; j++) { const key = attributes[j]; if (!isDateRangeCueAttribute(key)) { continue; } const cue = cues[key]; if (cue) { if (durationKnown && !appendedDateRangeCues.durationKnown) { cue.endTime = endTime; } } else if (Cue) { let data = dateRange.attr[key]; if (isSCTE35Attribute(key)) { data = hexToArrayBuffer(data); } const _cue = createCueWithDataFields(Cue, startTime, endTime, { key, data }, MetadataSchema.dateRange); if (_cue) { _cue.id = id; this.id3Track.addCue(_cue); cues[key] = _cue; } } } // Keep track of processed DateRanges by ID for updating cues with new DateRange tag attributes dateRangeCuesAppended[id] = { cues, dateRange, durationKnown }; } } } class LatencyController { constructor(hls) { this.hls = void 0; this.config = void 0; this.media = null; this.levelDetails = null; this.currentTime = 0; this.stallCount = 0; this._latency = null; this.onTimeupdate = () => { const { media, levelDetails } = this; if (!media || !levelDetails) { return; } this.currentTime = media.currentTime; const latency = this.computeLatency(); if (latency === null) { return; } this._latency = latency; // Adapt playbackRate to meet target latency in low-latency mode const { lowLatencyMode, maxLiveSyncPlaybackRate } = this.config; if (!lowLatencyMode || maxLiveSyncPlaybackRate === 1 || !levelDetails.live) { return; } const targetLatency = this.targetLatency; if (targetLatency === null) { return; } const distanceFromTarget = latency - targetLatency; // Only adjust playbackRate when within one target duration of targetLatency // and more than one second from under-buffering. // Playback further than one target duration from target can be considered DVR playback. const liveMinLatencyDuration = Math.min(this.maxLatency, targetLatency + levelDetails.targetduration); const inLiveRange = distanceFromTarget < liveMinLatencyDuration; if (inLiveRange && distanceFromTarget > 0.05 && this.forwardBufferLength > 1) { const max = Math.min(2, Math.max(1.0, maxLiveSyncPlaybackRate)); const rate = Math.round(2 / (1 + Math.exp(-0.75 * distanceFromTarget - this.edgeStalled)) * 20) / 20; media.playbackRate = Math.min(max, Math.max(1, rate)); } else if (media.playbackRate !== 1 && media.playbackRate !== 0) { media.playbackRate = 1; } }; this.hls = hls; this.config = hls.config; this.registerListeners(); } get latency() { return this._latency || 0; } get maxLatency() { const { config, levelDetails } = this; if (config.liveMaxLatencyDuration !== undefined) { return config.liveMaxLatencyDuration; } return levelDetails ? config.liveMaxLatencyDurationCount * levelDetails.targetduration : 0; } get targetLatency() { const { levelDetails } = this; if (levelDetails === null) { return null; } const { holdBack, partHoldBack, targetduration } = levelDetails; const { liveSyncDuration, liveSyncDurationCount, lowLatencyMode } = this.config; const userConfig = this.hls.userConfig; let targetLatency = lowLatencyMode ? partHoldBack || holdBack : holdBack; if (userConfig.liveSyncDuration || userConfig.liveSyncDurationCount || targetLatency === 0) { targetLatency = liveSyncDuration !== undefined ? liveSyncDuration : liveSyncDurationCount * targetduration; } const maxLiveSyncOnStallIncrease = targetduration; const liveSyncOnStallIncrease = 1.0; return targetLatency + Math.min(this.stallCount * liveSyncOnStallIncrease, maxLiveSyncOnStallIncrease); } get liveSyncPosition() { const liveEdge = this.estimateLiveEdge(); const targetLatency = this.targetLatency; const levelDetails = this.levelDetails; if (liveEdge === null || targetLatency === null || levelDetails === null) { return null; } const edge = levelDetails.edge; const syncPosition = liveEdge - targetLatency - this.edgeStalled; const min = edge - levelDetails.totalduration; const max = edge - (this.config.lowLatencyMode && levelDetails.partTarget || levelDetails.targetduration); return Math.min(Math.max(min, syncPosition), max); } get drift() { const { levelDetails } = this; if (levelDetails === null) { return 1; } return levelDetails.drift; } get edgeStalled() { const { levelDetails } = this; if (levelDetails === null) { return 0; } const maxLevelUpdateAge = (this.config.lowLatencyMode && levelDetails.partTarget || levelDetails.targetduration) * 3; return Math.max(levelDetails.age - maxLevelUpdateAge, 0); } get forwardBufferLength() { const { media, levelDetails } = this; if (!media || !levelDetails) { return 0; } const bufferedRanges = media.buffered.length; return (bufferedRanges ? media.buffered.end(bufferedRanges - 1) : levelDetails.edge) - this.currentTime; } destroy() { this.unregisterListeners(); this.onMediaDetaching(); this.levelDetails = null; // @ts-ignore this.hls = null; } registerListeners() { this.hls.on(Events.MEDIA_ATTACHED, this.onMediaAttached, this); this.hls.on(Events.MEDIA_DETACHING, this.onMediaDetaching, this); this.hls.on(Events.MANIFEST_LOADING, this.onManifestLoading, this); this.hls.on(Events.LEVEL_UPDATED, this.onLevelUpdated, this); this.hls.on(Events.ERROR, this.onError, this); } unregisterListeners() { this.hls.off(Events.MEDIA_ATTACHED, this.onMediaAttached, this); this.hls.off(Events.MEDIA_DETACHING, this.onMediaDetaching, this); this.hls.off(Events.MANIFEST_LOADING, this.onManifestLoading, this); this.hls.off(Events.LEVEL_UPDATED, this.onLevelUpdated, this); this.hls.off(Events.ERROR, this.onError, this); } onMediaAttached(event, data) { this.media = data.media; this.media.addEventListener('timeupdate', this.onTimeupdate); } onMediaDetaching() { if (this.media) { this.media.removeEventListener('timeupdate', this.onTimeupdate); this.media = null; } } onManifestLoading() { this.levelDetails = null; this._latency = null; this.stallCount = 0; } onLevelUpdated(event, { details }) { this.levelDetails = details; if (details.advanced) { this.onTimeupdate(); } if (!details.live && this.media) { this.media.removeEventListener('timeupdate', this.onTimeupdate); } } onError(event, data) { var _this$levelDetails; if (data.details !== ErrorDetails.BUFFER_STALLED_ERROR) { return; } this.stallCount++; if ((_this$levelDetails = this.levelDetails) != null && _this$levelDetails.live) { this.hls.logger.warn('[latency-controller]: Stall detected, adjusting target latency'); } } estimateLiveEdge() { const { levelDetails } = this; if (levelDetails === null) { return null; } return levelDetails.edge + levelDetails.age; } computeLatency() { const liveEdge = this.estimateLiveEdge(); if (liveEdge === null) { return null; } return liveEdge - this.currentTime; } } const HdcpLevels = ['NONE', 'TYPE-0', 'TYPE-1', null]; function isHdcpLevel(value) { return HdcpLevels.indexOf(value) > -1; } const VideoRangeValues = ['SDR', 'PQ', 'HLG']; function isVideoRange(value) { return !!value && VideoRangeValues.indexOf(value) > -1; } var HlsSkip = { No: "", Yes: "YES", v2: "v2" }; function getSkipValue(details, msn) { const { canSkipUntil, canSkipDateRanges, endSN } = details; const snChangeGoal = msn !== undefined ? msn - endSN : 0; if (canSkipUntil && snChangeGoal < canSkipUntil) { if (canSkipDateRanges) { return HlsSkip.v2; } return HlsSkip.Yes; } return HlsSkip.No; } class HlsUrlParameters { constructor(msn, part, skip) { this.msn = void 0; this.part = void 0; this.skip = void 0; this.msn = msn; this.part = part; this.skip = skip; } addDirectives(uri) { const url = new self.URL(uri); if (this.msn !== undefined) { url.searchParams.set('_HLS_msn', this.msn.toString()); } if (this.part !== undefined) { url.searchParams.set('_HLS_part', this.part.toString()); } if (this.skip) { url.searchParams.set('_HLS_skip', this.skip); } return url.href; } } class Level { constructor(data) { this._attrs = void 0; this.audioCodec = void 0; this.bitrate = void 0; this.codecSet = void 0; this.url = void 0; this.frameRate = void 0; this.height = void 0; this.id = void 0; this.name = void 0; this.videoCodec = void 0; this.width = void 0; this.details = void 0; this.fragmentError = 0; this.loadError = 0; this.loaded = void 0; this.realBitrate = 0; this.supportedPromise = void 0; this.supportedResult = void 0; this._avgBitrate = 0; this._audioGroups = void 0; this._subtitleGroups = void 0; // Deprecated (retained for backwards compatibility) this._urlId = 0; this.url = [data.url]; this._attrs = [data.attrs]; this.bitrate = data.bitrate; if (data.details) { this.details = data.details; } this.id = data.id || 0; this.name = data.name; this.width = data.width || 0; this.height = data.height || 0; this.frameRate = data.attrs.optionalFloat('FRAME-RATE', 0); this._avgBitrate = data.attrs.decimalInteger('AVERAGE-BANDWIDTH'); this.audioCodec = data.audioCodec; this.videoCodec = data.videoCodec; this.codecSet = [data.videoCodec, data.audioCodec].filter(c => !!c).map(s => s.substring(0, 4)).join(','); this.addGroupId('audio', data.attrs.AUDIO); this.addGroupId('text', data.attrs.SUBTITLES); } get maxBitrate() { return Math.max(this.realBitrate, this.bitrate); } get averageBitrate() { return this._avgBitrate || this.realBitrate || this.bitrate; } get attrs() { return this._attrs[0]; } get codecs() { return this.attrs.CODECS || ''; } get pathwayId() { return this.attrs['PATHWAY-ID'] || '.'; } get videoRange() { return this.attrs['VIDEO-RANGE'] || 'SDR'; } get score() { return this.attrs.optionalFloat('SCORE', 0); } get uri() { return this.url[0] || ''; } hasAudioGroup(groupId) { return hasGroup(this._audioGroups, groupId); } hasSubtitleGroup(groupId) { return hasGroup(this._subtitleGroups, groupId); } get audioGroups() { return this._audioGroups; } get subtitleGroups() { return this._subtitleGroups; } addGroupId(type, groupId) { if (!groupId) { return; } if (type === 'audio') { let audioGroups = this._audioGroups; if (!audioGroups) { audioGroups = this._audioGroups = []; } if (audioGroups.indexOf(groupId) === -1) { audioGroups.push(groupId); } } else if (type === 'text') { let subtitleGroups = this._subtitleGroups; if (!subtitleGroups) { subtitleGroups = this._subtitleGroups = []; } if (subtitleGroups.indexOf(groupId) === -1) { subtitleGroups.push(groupId); } } } // Deprecated methods (retained for backwards compatibility) get urlId() { return 0; } set urlId(value) {} get audioGroupIds() { return this.audioGroups ? [this.audioGroupId] : undefined; } get textGroupIds() { return this.subtitleGroups ? [this.textGroupId] : undefined; } get audioGroupId() { var _this$audioGroups; return (_this$audioGroups = this.audioGroups) == null ? void 0 : _this$audioGroups[0]; } get textGroupId() { var _this$subtitleGroups; return (_this$subtitleGroups = this.subtitleGroups) == null ? void 0 : _this$subtitleGroups[0]; } addFallback() {} } function hasGroup(groups, groupId) { if (!groupId || !groups) { return false; } return groups.indexOf(groupId) !== -1; } function updateFromToPTS(fragFrom, fragTo) { const fragToPTS = fragTo.startPTS; // if we know startPTS[toIdx] if (isFiniteNumber(fragToPTS)) { // update fragment duration. // it helps to fix drifts between playlist reported duration and fragment real duration let duration = 0; let frag; if (fragTo.sn > fragFrom.sn) { duration = fragToPTS - fragFrom.start; frag = fragFrom; } else { duration = fragFrom.start - fragToPTS; frag = fragTo; } if (frag.duration !== duration) { frag.duration = duration; } // we dont know startPTS[toIdx] } else if (fragTo.sn > fragFrom.sn) { const contiguous = fragFrom.cc === fragTo.cc; // TODO: With part-loading end/durations we need to confirm the whole fragment is loaded before using (or setting) minEndPTS if (contiguous && fragFrom.minEndPTS) { fragTo.start = fragFrom.start + (fragFrom.minEndPTS - fragFrom.start); } else { fragTo.start = fragFrom.start + fragFrom.duration; } } else { fragTo.start = Math.max(fragFrom.start - fragTo.duration, 0); } } function updateFragPTSDTS(details, frag, startPTS, endPTS, startDTS, endDTS) { const parsedMediaDuration = endPTS - startPTS; if (parsedMediaDuration <= 0) { logger.warn('Fragment should have a positive duration', frag); endPTS = startPTS + frag.duration; endDTS = startDTS + frag.duration; } let maxStartPTS = startPTS; let minEndPTS = endPTS; const fragStartPts = frag.startPTS; const fragEndPts = frag.endPTS; if (isFiniteNumber(fragStartPts)) { // delta PTS between audio and video const deltaPTS = Math.abs(fragStartPts - startPTS); if (!isFiniteNumber(frag.deltaPTS)) { frag.deltaPTS = deltaPTS; } else { frag.deltaPTS = Math.max(deltaPTS, frag.deltaPTS); } maxStartPTS = Math.max(startPTS, fragStartPts); startPTS = Math.min(startPTS, fragStartPts); startDTS = Math.min(startDTS, frag.startDTS); minEndPTS = Math.min(endPTS, fragEndPts); endPTS = Math.max(endPTS, fragEndPts); endDTS = Math.max(endDTS, frag.endDTS); } const drift = startPTS - frag.start; if (frag.start !== 0) { frag.start = startPTS; } frag.duration = endPTS - frag.start; frag.startPTS = startPTS; frag.maxStartPTS = maxStartPTS; frag.startDTS = startDTS; frag.endPTS = endPTS; frag.minEndPTS = minEndPTS; frag.endDTS = endDTS; const sn = frag.sn; // 'initSegment' // exit if sn out of range if (!details || sn < details.startSN || sn > details.endSN) { return 0; } let i; const fragIdx = sn - details.startSN; const fragments = details.fragments; // update frag reference in fragments array // rationale is that fragments array might not contain this frag object. // this will happen if playlist has been refreshed between frag loading and call to updateFragPTSDTS() // if we don't update frag, we won't be able to propagate PTS info on the playlist // resulting in invalid sliding computation fragments[fragIdx] = frag; // adjust fragment PTS/duration from seqnum-1 to frag 0 for (i = fragIdx; i > 0; i--) { updateFromToPTS(fragments[i], fragments[i - 1]); } // adjust fragment PTS/duration from seqnum to last frag for (i = fragIdx; i < fragments.length - 1; i++) { updateFromToPTS(fragments[i], fragments[i + 1]); } if (details.fragmentHint) { updateFromToPTS(fragments[fragments.length - 1], details.fragmentHint); } details.PTSKnown = details.alignedSliding = true; return drift; } function mergeDetails(oldDetails, newDetails) { // Track the last initSegment processed. Initialize it to the last one on the timeline. let currentInitSegment = null; const oldFragments = oldDetails.fragments; for (let i = oldFragments.length - 1; i >= 0; i--) { const oldInit = oldFragments[i].initSegment; if (oldInit) { currentInitSegment = oldInit; break; } } if (oldDetails.fragmentHint) { // prevent PTS and duration from being adjusted on the next hint delete oldDetails.fragmentHint.endPTS; } // check if old/new playlists have fragments in common // loop through overlapping SN and update startPTS , cc, and duration if any found let ccOffset = 0; let PTSFrag; mapFragmentIntersection(oldDetails, newDetails, (oldFrag, newFrag) => { if (oldFrag.relurl) { // Do not compare CC if the old fragment has no url. This is a level.fragmentHint used by LL-HLS parts. // It maybe be off by 1 if it was created before any parts or discontinuity tags were appended to the end // of the playlist. ccOffset = oldFrag.cc - newFrag.cc; } if (isFiniteNumber(oldFrag.startPTS) && isFiniteNumber(oldFrag.endPTS)) { newFrag.start = newFrag.startPTS = oldFrag.startPTS; newFrag.startDTS = oldFrag.startDTS; newFrag.maxStartPTS = oldFrag.maxStartPTS; newFrag.endPTS = oldFrag.endPTS; newFrag.endDTS = oldFrag.endDTS; newFrag.minEndPTS = oldFrag.minEndPTS; newFrag.duration = oldFrag.endPTS - oldFrag.startPTS; if (newFrag.duration) { PTSFrag = newFrag; } // PTS is known when any segment has startPTS and endPTS newDetails.PTSKnown = newDetails.alignedSliding = true; } newFrag.elementaryStreams = oldFrag.elementaryStreams; newFrag.loader = oldFrag.loader; newFrag.stats = oldFrag.stats; if (oldFrag.initSegment) { newFrag.initSegment = oldFrag.initSegment; currentInitSegment = oldFrag.initSegment; } }); if (currentInitSegment) { const fragmentsToCheck = newDetails.fragmentHint ? newDetails.fragments.concat(newDetails.fragmentHint) : newDetails.fragments; fragmentsToCheck.forEach(frag => { var _currentInitSegment; if (frag && (!frag.initSegment || frag.initSegment.relurl === ((_currentInitSegment = currentInitSegment) == null ? void 0 : _currentInitSegment.relurl))) { frag.initSegment = currentInitSegment; } }); } if (newDetails.skippedSegments) { newDetails.deltaUpdateFailed = newDetails.fragments.some(frag => !frag); if (newDetails.deltaUpdateFailed) { logger.warn('[level-helper] Previous playlist missing segments skipped in delta playlist'); for (let i = newDetails.skippedSegments; i--;) { newDetails.fragments.shift(); } newDetails.startSN = newDetails.fragments[0].sn; newDetails.startCC = newDetails.fragments[0].cc; } else if (newDetails.canSkipDateRanges) { newDetails.dateRanges = mergeDateRanges(oldDetails.dateRanges, newDetails.dateRanges, newDetails.recentlyRemovedDateranges); } } const newFragments = newDetails.fragments; if (ccOffset) { logger.warn('discontinuity sliding from playlist, take drift into account'); for (let i = 0; i < newFragments.length; i++) { newFragments[i].cc += ccOffset; } } if (newDetails.skippedSegments) { newDetails.startCC = newDetails.fragments[0].cc; } // Merge parts mapPartIntersection(oldDetails.partList, newDetails.partList, (oldPart, newPart) => { newPart.elementaryStreams = oldPart.elementaryStreams; newPart.stats = oldPart.stats; }); // if at least one fragment contains PTS info, recompute PTS information for all fragments if (PTSFrag) { updateFragPTSDTS(newDetails, PTSFrag, PTSFrag.startPTS, PTSFrag.endPTS, PTSFrag.startDTS, PTSFrag.endDTS); } else { // ensure that delta is within oldFragments range // also adjust sliding in case delta is 0 (we could have old=[50-60] and new=old=[50-61]) // in that case we also need to adjust start offset of all fragments adjustSliding(oldDetails, newDetails); } if (newFragments.length) { newDetails.totalduration = newDetails.edge - newFragments[0].start; } newDetails.driftStartTime = oldDetails.driftStartTime; newDetails.driftStart = oldDetails.driftStart; const advancedDateTime = newDetails.advancedDateTime; if (newDetails.advanced && advancedDateTime) { const edge = newDetails.edge; if (!newDetails.driftStart) { newDetails.driftStartTime = advancedDateTime; newDetails.driftStart = edge; } newDetails.driftEndTime = advancedDateTime; newDetails.driftEnd = edge; } else { newDetails.driftEndTime = oldDetails.driftEndTime; newDetails.driftEnd = oldDetails.driftEnd; newDetails.advancedDateTime = oldDetails.advancedDateTime; } } function mergeDateRanges(oldDateRanges, deltaDateRanges, recentlyRemovedDateranges) { const dateRanges = _extends({}, oldDateRanges); if (recentlyRemovedDateranges) { recentlyRemovedDateranges.forEach(id => { delete dateRanges[id]; }); } Object.keys(deltaDateRanges).forEach(id => { const dateRange = new DateRange(deltaDateRanges[id].attr, dateRanges[id]); if (dateRange.isValid) { dateRanges[id] = dateRange; } else { logger.warn(`Ignoring invalid Playlist Delta Update DATERANGE tag: "${JSON.stringify(deltaDateRanges[id].attr)}"`); } }); return dateRanges; } function mapPartIntersection(oldParts, newParts, intersectionFn) { if (oldParts && newParts) { let delta = 0; for (let i = 0, len = oldParts.length; i <= len; i++) { const oldPart = oldParts[i]; const newPart = newParts[i + delta]; if (oldPart && newPart && oldPart.index === newPart.index && oldPart.fragment.sn === newPart.fragment.sn) { intersectionFn(oldPart, newPart); } else { delta--; } } } } function mapFragmentIntersection(oldDetails, newDetails, intersectionFn) { const skippedSegments = newDetails.skippedSegments; const start = Math.max(oldDetails.startSN, newDetails.startSN) - newDetails.startSN; const end = (oldDetails.fragmentHint ? 1 : 0) + (skippedSegments ? newDetails.endSN : Math.min(oldDetails.endSN, newDetails.endSN)) - newDetails.startSN; const delta = newDetails.startSN - oldDetails.startSN; const newFrags = newDetails.fragmentHint ? newDetails.fragments.concat(newDetails.fragmentHint) : newDetails.fragments; const oldFrags = oldDetails.fragmentHint ? oldDetails.fragments.concat(oldDetails.fragmentHint) : oldDetails.fragments; for (let i = start; i <= end; i++) { const oldFrag = oldFrags[delta + i]; let newFrag = newFrags[i]; if (skippedSegments && !newFrag && i < skippedSegments) { // Fill in skipped segments in delta playlist newFrag = newDetails.fragments[i] = oldFrag; } if (oldFrag && newFrag) { intersectionFn(oldFrag, newFrag); } } } function adjustSliding(oldDetails, newDetails) { const delta = newDetails.startSN + newDetails.skippedSegments - oldDetails.startSN; const oldFragments = oldDetails.fragments; if (delta < 0 || delta >= oldFragments.length) { return; } addSliding(newDetails, oldFragments[delta].start); } function addSliding(details, start) { if (start) { const fragments = details.fragments; for (let i = details.skippedSegments; i < fragments.length; i++) { fragments[i].start += start; } if (details.fragmentHint) { details.fragmentHint.start += start; } } } function computeReloadInterval(newDetails, distanceToLiveEdgeMs = Infinity) { let reloadInterval = 1000 * newDetails.targetduration; if (newDetails.updated) { // Use last segment duration when shorter than target duration and near live edge const fragments = newDetails.fragments; const liveEdgeMaxTargetDurations = 4; if (fragments.length && reloadInterval * liveEdgeMaxTargetDurations > distanceToLiveEdgeMs) { const lastSegmentDuration = fragments[fragments.length - 1].duration * 1000; if (lastSegmentDuration < reloadInterval) { reloadInterval = lastSegmentDuration; } } } else { // estimate = 'miss half average'; // follow HLS Spec, If the client reloads a Playlist file and finds that it has not // changed then it MUST wait for a period of one-half the target // duration before retrying. reloadInterval /= 2; } return Math.round(reloadInterval); } function getFragmentWithSN(level, sn, fragCurrent) { if (!(level != null && level.details)) { return null; } const levelDetails = level.details; let fragment = levelDetails.fragments[sn - levelDetails.startSN]; if (fragment) { return fragment; } fragment = levelDetails.fragmentHint; if (fragment && fragment.sn === sn) { return fragment; } if (sn < levelDetails.startSN && fragCurrent && fragCurrent.sn === sn) { return fragCurrent; } return null; } function getPartWith(level, sn, partIndex) { var _level$details; if (!(level != null && level.details)) { return null; } return findPart((_level$details = level.details) == null ? void 0 : _level$details.partList, sn, partIndex); } function findPart(partList, sn, partIndex) { if (partList) { for (let i = partList.length; i--;) { const part = partList[i]; if (part.index === partIndex && part.fragment.sn === sn) { return part; } } } return null; } function reassignFragmentLevelIndexes(levels) { levels.forEach((level, index) => { const { details } = level; if (details != null && details.fragments) { details.fragments.forEach(fragment => { fragment.level = index; }); } }); } function isTimeoutError(error) { switch (error.details) { case ErrorDetails.FRAG_LOAD_TIMEOUT: case ErrorDetails.KEY_LOAD_TIMEOUT: case ErrorDetails.LEVEL_LOAD_TIMEOUT: case ErrorDetails.MANIFEST_LOAD_TIMEOUT: return true; } return false; } function getRetryConfig(loadPolicy, error) { const isTimeout = isTimeoutError(error); return loadPolicy.default[`${isTimeout ? 'timeout' : 'error'}Retry`]; } function getRetryDelay(retryConfig, retryCount) { // exponential backoff capped to max retry delay const backoffFactor = retryConfig.backoff === 'linear' ? 1 : Math.pow(2, retryCount); return Math.min(backoffFactor * retryConfig.retryDelayMs, retryConfig.maxRetryDelayMs); } function getLoaderConfigWithoutReties(loderConfig) { return _objectSpread2(_objectSpread2({}, loderConfig), { errorRetry: null, timeoutRetry: null }); } function shouldRetry(retryConfig, retryCount, isTimeout, loaderResponse) { if (!retryConfig) { return false; } const httpStatus = loaderResponse == null ? void 0 : loaderResponse.code; const retry = retryCount < retryConfig.maxNumRetry && (retryForHttpStatus(httpStatus) || !!isTimeout); return retryConfig.shouldRetry ? retryConfig.shouldRetry(retryConfig, retryCount, isTimeout, loaderResponse, retry) : retry; } function retryForHttpStatus(httpStatus) { // Do not retry on status 4xx, status 0 (CORS error), or undefined (decrypt/gap/parse error) return httpStatus === 0 && navigator.onLine === false || !!httpStatus && (httpStatus < 400 || httpStatus > 499); } const BinarySearch = { /** * Searches for an item in an array which matches a certain condition. * This requires the condition to only match one item in the array, * and for the array to be ordered. * * @param list The array to search. * @param comparisonFn * Called and provided a candidate item as the first argument. * Should return: * > -1 if the item should be located at a lower index than the provided item. * > 1 if the item should be located at a higher index than the provided item. * > 0 if the item is the item you're looking for. * * @returns the object if found, otherwise returns null */ search: function (list, comparisonFn) { let minIndex = 0; let maxIndex = list.length - 1; let currentIndex = null; let currentElement = null; while (minIndex <= maxIndex) { currentIndex = (minIndex + maxIndex) / 2 | 0; currentElement = list[currentIndex]; const comparisonResult = comparisonFn(currentElement); if (comparisonResult > 0) { minIndex = currentIndex + 1; } else if (comparisonResult < 0) { maxIndex = currentIndex - 1; } else { return currentElement; } } return null; } }; /** * Returns first fragment whose endPdt value exceeds the given PDT, or null. * @param fragments - The array of candidate fragments * @param PDTValue - The PDT value which must be exceeded * @param maxFragLookUpTolerance - The amount of time that a fragment's start/end can be within in order to be considered contiguous */ function findFragmentByPDT(fragments, PDTValue, maxFragLookUpTolerance) { if (PDTValue === null || !Array.isArray(fragments) || !fragments.length || !isFiniteNumber(PDTValue)) { return null; } // if less than start const startPDT = fragments[0].programDateTime; if (PDTValue < (startPDT || 0)) { return null; } const endPDT = fragments[fragments.length - 1].endProgramDateTime; if (PDTValue >= (endPDT || 0)) { return null; } maxFragLookUpTolerance = maxFragLookUpTolerance || 0; for (let seg = 0; seg < fragments.length; ++seg) { const frag = fragments[seg]; if (pdtWithinToleranceTest(PDTValue, maxFragLookUpTolerance, frag)) { return frag; } } return null; } /** * Finds a fragment based on the SN of the previous fragment; or based on the needs of the current buffer. * This method compensates for small buffer gaps by applying a tolerance to the start of any candidate fragment, thus * breaking any traps which would cause the same fragment to be continuously selected within a small range. * @param fragPrevious - The last frag successfully appended * @param fragments - The array of candidate fragments * @param bufferEnd - The end of the contiguous buffered range the playhead is currently within * @param maxFragLookUpTolerance - The amount of time that a fragment's start/end can be within in order to be considered contiguous * @returns a matching fragment or null */ function findFragmentByPTS(fragPrevious, fragments, bufferEnd = 0, maxFragLookUpTolerance = 0) { let fragNext = null; if (fragPrevious) { fragNext = fragments[fragPrevious.sn - fragments[0].sn + 1] || null; // check for buffer-end rounding error const bufferEdgeError = fragPrevious.endDTS - bufferEnd; if (bufferEdgeError > 0 && bufferEdgeError < 0.0000015) { bufferEnd += 0.0000015; } } else if (bufferEnd === 0 && fragments[0].start === 0) { fragNext = fragments[0]; } // Prefer the next fragment if it's within tolerance if (fragNext && (!fragPrevious || fragPrevious.level === fragNext.level) && fragmentWithinToleranceTest(bufferEnd, maxFragLookUpTolerance, fragNext) === 0) { return fragNext; } // We might be seeking past the tolerance so find the best match const foundFragment = BinarySearch.search(fragments, fragmentWithinToleranceTest.bind(null, bufferEnd, maxFragLookUpTolerance)); if (foundFragment && (foundFragment !== fragPrevious || !fragNext)) { return foundFragment; } // If no match was found return the next fragment after fragPrevious, or null return fragNext; } /** * The test function used by the findFragmentBySn's BinarySearch to look for the best match to the current buffer conditions. * @param candidate - The fragment to test * @param bufferEnd - The end of the current buffered range the playhead is currently within * @param maxFragLookUpTolerance - The amount of time that a fragment's start can be within in order to be considered contiguous * @returns 0 if it matches, 1 if too low, -1 if too high */ function fragmentWithinToleranceTest(bufferEnd = 0, maxFragLookUpTolerance = 0, candidate) { // eagerly accept an accurate match (no tolerance) if (candidate.start <= bufferEnd && candidate.start + candidate.duration > bufferEnd) { return 0; } // offset should be within fragment boundary - config.maxFragLookUpTolerance // this is to cope with situations like // bufferEnd = 9.991 // frag[Ø] : [0,10] // frag[1] : [10,20] // bufferEnd is within frag[0] range ... although what we are expecting is to return frag[1] here // frag start frag start+duration // |-----------------------------| // <---> <---> // ...--------><-----------------------------><---------.... // previous frag matching fragment next frag // return -1 return 0 return 1 // logger.log(`level/sn/start/end/bufEnd:${level}/${candidate.sn}/${candidate.start}/${(candidate.start+candidate.duration)}/${bufferEnd}`); // Set the lookup tolerance to be small enough to detect the current segment - ensures we don't skip over very small segments const candidateLookupTolerance = Math.min(maxFragLookUpTolerance, candidate.duration + (candidate.deltaPTS ? candidate.deltaPTS : 0)); if (candidate.start + candidate.duration - candidateLookupTolerance <= bufferEnd) { return 1; } else if (candidate.start - candidateLookupTolerance > bufferEnd && candidate.start) { // if maxFragLookUpTolerance will have negative value then don't return -1 for first element return -1; } return 0; } /** * The test function used by the findFragmentByPdt's BinarySearch to look for the best match to the current buffer conditions. * This function tests the candidate's program date time values, as represented in Unix time * @param candidate - The fragment to test * @param pdtBufferEnd - The Unix time representing the end of the current buffered range * @param maxFragLookUpTolerance - The amount of time that a fragment's start can be within in order to be considered contiguous * @returns true if contiguous, false otherwise */ function pdtWithinToleranceTest(pdtBufferEnd, maxFragLookUpTolerance, candidate) { const candidateLookupTolerance = Math.min(maxFragLookUpTolerance, candidate.duration + (candidate.deltaPTS ? candidate.deltaPTS : 0)) * 1000; // endProgramDateTime can be null, default to zero const endProgramDateTime = candidate.endProgramDateTime || 0; return endProgramDateTime - candidateLookupTolerance > pdtBufferEnd; } function findFragWithCC(fragments, cc) { return BinarySearch.search(fragments, candidate => { if (candidate.cc < cc) { return 1; } else if (candidate.cc > cc) { return -1; } else { return 0; } }); } var NetworkErrorAction = { DoNothing: 0, SendEndCallback: 1, SendAlternateToPenaltyBox: 2, RemoveAlternatePermanently: 3, InsertDiscontinuity: 4, RetryRequest: 5 }; var ErrorActionFlags = { None: 0, MoveAllAlternatesMatchingHost: 1, MoveAllAlternatesMatchingHDCP: 2, SwitchToSDR: 4 }; // Reserved for future use class ErrorController extends Logger { constructor(hls) { super('error-controller', hls.logger); this.hls = void 0; this.playlistError = 0; this.penalizedRenditions = {}; this.hls = hls; this.registerListeners(); } registerListeners() { const hls = this.hls; hls.on(Events.ERROR, this.onError, this); hls.on(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.on(Events.LEVEL_UPDATED, this.onLevelUpdated, this); } unregisterListeners() { const hls = this.hls; if (!hls) { return; } hls.off(Events.ERROR, this.onError, this); hls.off(Events.ERROR, this.onErrorOut, this); hls.off(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.off(Events.LEVEL_UPDATED, this.onLevelUpdated, this); } destroy() { this.unregisterListeners(); // @ts-ignore this.hls = null; this.penalizedRenditions = {}; } startLoad(startPosition) {} stopLoad() { this.playlistError = 0; } getVariantLevelIndex(frag) { return (frag == null ? void 0 : frag.type) === PlaylistLevelType.MAIN ? frag.level : this.hls.loadLevel; } onManifestLoading() { this.playlistError = 0; this.penalizedRenditions = {}; } onLevelUpdated() { this.playlistError = 0; } onError(event, data) { var _data$frag, _data$level; if (data.fatal) { return; } const hls = this.hls; const context = data.context; switch (data.details) { case ErrorDetails.FRAG_LOAD_ERROR: case ErrorDetails.FRAG_LOAD_TIMEOUT: case ErrorDetails.KEY_LOAD_ERROR: case ErrorDetails.KEY_LOAD_TIMEOUT: data.errorAction = this.getFragRetryOrSwitchAction(data); return; case ErrorDetails.FRAG_PARSING_ERROR: // ignore empty segment errors marked as gap if ((_data$frag = data.frag) != null && _data$frag.gap) { data.errorAction = { action: NetworkErrorAction.DoNothing, flags: ErrorActionFlags.None }; return; } // falls through case ErrorDetails.FRAG_GAP: case ErrorDetails.FRAG_DECRYPT_ERROR: { // Switch level if possible, otherwise allow retry count to reach max error retries data.errorAction = this.getFragRetryOrSwitchAction(data); data.errorAction.action = NetworkErrorAction.SendAlternateToPenaltyBox; return; } case ErrorDetails.LEVEL_EMPTY_ERROR: case ErrorDetails.LEVEL_PARSING_ERROR: { var _data$context, _data$context$levelDe; // Only retry when empty and live const levelIndex = data.parent === PlaylistLevelType.MAIN ? data.level : hls.loadLevel; if (data.details === ErrorDetails.LEVEL_EMPTY_ERROR && !!((_data$context = data.context) != null && (_data$context$levelDe = _data$context.levelDetails) != null && _data$context$levelDe.live)) { data.errorAction = this.getPlaylistRetryOrSwitchAction(data, levelIndex); } else { // Escalate to fatal if not retrying or switching data.levelRetry = false; data.errorAction = this.getLevelSwitchAction(data, levelIndex); } } return; case ErrorDetails.LEVEL_LOAD_ERROR: case ErrorDetails.LEVEL_LOAD_TIMEOUT: if (typeof (context == null ? void 0 : context.level) === 'number') { data.errorAction = this.getPlaylistRetryOrSwitchAction(data, context.level); } return; case ErrorDetails.AUDIO_TRACK_LOAD_ERROR: case ErrorDetails.AUDIO_TRACK_LOAD_TIMEOUT: case ErrorDetails.SUBTITLE_LOAD_ERROR: case ErrorDetails.SUBTITLE_TRACK_LOAD_TIMEOUT: if (context) { const level = hls.levels[hls.loadLevel]; if (level && (context.type === PlaylistContextType.AUDIO_TRACK && level.hasAudioGroup(context.groupId) || context.type === PlaylistContextType.SUBTITLE_TRACK && level.hasSubtitleGroup(context.groupId))) { // Perform Pathway switch or Redundant failover if possible for fastest recovery // otherwise allow playlist retry count to reach max error retries data.errorAction = this.getPlaylistRetryOrSwitchAction(data, hls.loadLevel); data.errorAction.action = NetworkErrorAction.SendAlternateToPenaltyBox; data.errorAction.flags = ErrorActionFlags.MoveAllAlternatesMatchingHost; return; } } return; case ErrorDetails.KEY_SYSTEM_STATUS_OUTPUT_RESTRICTED: { const level = hls.levels[hls.loadLevel]; const restrictedHdcpLevel = level == null ? void 0 : level.attrs['HDCP-LEVEL']; if (restrictedHdcpLevel) { data.errorAction = { action: NetworkErrorAction.SendAlternateToPenaltyBox, flags: ErrorActionFlags.MoveAllAlternatesMatchingHDCP, hdcpLevel: restrictedHdcpLevel }; } else { this.keySystemError(data); } } return; case ErrorDetails.BUFFER_ADD_CODEC_ERROR: case ErrorDetails.REMUX_ALLOC_ERROR: case ErrorDetails.BUFFER_APPEND_ERROR: data.errorAction = this.getLevelSwitchAction(data, (_data$level = data.level) != null ? _data$level : hls.loadLevel); return; case ErrorDetails.INTERNAL_EXCEPTION: case ErrorDetails.BUFFER_APPENDING_ERROR: case ErrorDetails.BUFFER_FULL_ERROR: case ErrorDetails.LEVEL_SWITCH_ERROR: case ErrorDetails.BUFFER_STALLED_ERROR: case ErrorDetails.BUFFER_SEEK_OVER_HOLE: case ErrorDetails.BUFFER_NUDGE_ON_STALL: data.errorAction = { action: NetworkErrorAction.DoNothing, flags: ErrorActionFlags.None }; return; } if (data.type === ErrorTypes.KEY_SYSTEM_ERROR) { this.keySystemError(data); } } keySystemError(data) { const levelIndex = this.getVariantLevelIndex(data.frag); // Do not retry level. Escalate to fatal if switching levels fails. data.levelRetry = false; data.errorAction = this.getLevelSwitchAction(data, levelIndex); } getPlaylistRetryOrSwitchAction(data, levelIndex) { const hls = this.hls; const retryConfig = getRetryConfig(hls.config.playlistLoadPolicy, data); const retryCount = this.playlistError++; const retry = shouldRetry(retryConfig, retryCount, isTimeoutError(data), data.response); if (retry) { return { action: NetworkErrorAction.RetryRequest, flags: ErrorActionFlags.None, retryConfig, retryCount }; } const errorAction = this.getLevelSwitchAction(data, levelIndex); if (retryConfig) { errorAction.retryConfig = retryConfig; errorAction.retryCount = retryCount; } return errorAction; } getFragRetryOrSwitchAction(data) { const hls = this.hls; // Share fragment error count accross media options (main, audio, subs) // This allows for level based rendition switching when media option assets fail const variantLevelIndex = this.getVariantLevelIndex(data.frag); const level = hls.levels[variantLevelIndex]; const { fragLoadPolicy, keyLoadPolicy } = hls.config; const retryConfig = getRetryConfig(data.details.startsWith('key') ? keyLoadPolicy : fragLoadPolicy, data); const fragmentErrors = hls.levels.reduce((acc, level) => acc + level.fragmentError, 0); // Switch levels when out of retried or level index out of bounds if (level) { if (data.details !== ErrorDetails.FRAG_GAP) { level.fragmentError++; } const retry = shouldRetry(retryConfig, fragmentErrors, isTimeoutError(data), data.response); if (retry) { return { action: NetworkErrorAction.RetryRequest, flags: ErrorActionFlags.None, retryConfig, retryCount: fragmentErrors }; } } // Reach max retry count, or Missing level reference // Switch to valid index const errorAction = this.getLevelSwitchAction(data, variantLevelIndex); // Add retry details to allow skipping of FRAG_PARSING_ERROR if (retryConfig) { errorAction.retryConfig = retryConfig; errorAction.retryCount = fragmentErrors; } return errorAction; } getLevelSwitchAction(data, levelIndex) { const hls = this.hls; if (levelIndex === null || levelIndex === undefined) { levelIndex = hls.loadLevel; } const level = this.hls.levels[levelIndex]; if (level) { var _data$frag2, _data$context2; const errorDetails = data.details; level.loadError++; if (errorDetails === ErrorDetails.BUFFER_APPEND_ERROR) { level.fragmentError++; } // Search for next level to retry let nextLevel = -1; const { levels, loadLevel, minAutoLevel, maxAutoLevel } = hls; if (!hls.autoLevelEnabled) { hls.loadLevel = -1; } const fragErrorType = (_data$frag2 = data.frag) == null ? void 0 : _data$frag2.type; // Find alternate audio codec if available on audio codec error const isAudioCodecError = fragErrorType === PlaylistLevelType.AUDIO && errorDetails === ErrorDetails.FRAG_PARSING_ERROR || data.sourceBufferName === 'audio' && (errorDetails === ErrorDetails.BUFFER_ADD_CODEC_ERROR || errorDetails === ErrorDetails.BUFFER_APPEND_ERROR); const findAudioCodecAlternate = isAudioCodecError && levels.some(({ audioCodec }) => level.audioCodec !== audioCodec); // Find alternate video codec if available on video codec error const isVideoCodecError = data.sourceBufferName === 'video' && (errorDetails === ErrorDetails.BUFFER_ADD_CODEC_ERROR || errorDetails === ErrorDetails.BUFFER_APPEND_ERROR); const findVideoCodecAlternate = isVideoCodecError && levels.some(({ codecSet, audioCodec }) => level.codecSet !== codecSet && level.audioCodec === audioCodec); const { type: playlistErrorType, groupId: playlistErrorGroupId } = (_data$context2 = data.context) != null ? _data$context2 : {}; for (let i = levels.length; i--;) { const candidate = (i + loadLevel) % levels.length; if (candidate !== loadLevel && candidate >= minAutoLevel && candidate <= maxAutoLevel && levels[candidate].loadError === 0) { var _level$audioGroups, _level$subtitleGroups; const levelCandidate = levels[candidate]; // Skip level switch if GAP tag is found in next level at same position if (errorDetails === ErrorDetails.FRAG_GAP && data.frag) { const levelDetails = levels[candidate].details; if (levelDetails) { const fragCandidate = findFragmentByPTS(data.frag, levelDetails.fragments, data.frag.start); if (fragCandidate != null && fragCandidate.gap) { continue; } } } else if (playlistErrorType === PlaylistContextType.AUDIO_TRACK && levelCandidate.hasAudioGroup(playlistErrorGroupId) || playlistErrorType === PlaylistContextType.SUBTITLE_TRACK && levelCandidate.hasSubtitleGroup(playlistErrorGroupId)) { // For audio/subs playlist errors find another group ID or fallthrough to redundant fail-over continue; } else if (fragErrorType === PlaylistLevelType.AUDIO && (_level$audioGroups = level.audioGroups) != null && _level$audioGroups.some(groupId => levelCandidate.hasAudioGroup(groupId)) || fragErrorType === PlaylistLevelType.SUBTITLE && (_level$subtitleGroups = level.subtitleGroups) != null && _level$subtitleGroups.some(groupId => levelCandidate.hasSubtitleGroup(groupId)) || findAudioCodecAlternate && level.audioCodec === levelCandidate.audioCodec || !findAudioCodecAlternate && level.audioCodec !== levelCandidate.audioCodec || findVideoCodecAlternate && level.codecSet === levelCandidate.codecSet) { // For video/audio/subs frag errors find another group ID or fallthrough to redundant fail-over continue; } nextLevel = candidate; break; } } if (nextLevel > -1 && hls.loadLevel !== nextLevel) { data.levelRetry = true; this.playlistError = 0; return { action: NetworkErrorAction.SendAlternateToPenaltyBox, flags: ErrorActionFlags.None, nextAutoLevel: nextLevel }; } } // No levels to switch / Manual level selection / Level not found // Resolve with Pathway switch, Redundant fail-over, or stay on lowest Level return { action: NetworkErrorAction.SendAlternateToPenaltyBox, flags: ErrorActionFlags.MoveAllAlternatesMatchingHost }; } onErrorOut(event, data) { var _data$errorAction; switch ((_data$errorAction = data.errorAction) == null ? void 0 : _data$errorAction.action) { case NetworkErrorAction.DoNothing: break; case NetworkErrorAction.SendAlternateToPenaltyBox: this.sendAlternateToPenaltyBox(data); if (!data.errorAction.resolved && data.details !== ErrorDetails.FRAG_GAP) { data.fatal = true; } else if (/MediaSource readyState: ended/.test(data.error.message)) { this.warn(`MediaSource ended after "${data.sourceBufferName}" sourceBuffer append error. Attempting to recover from media error.`); this.hls.recoverMediaError(); } break; case NetworkErrorAction.RetryRequest: // handled by stream and playlist/level controllers break; } if (data.fatal) { this.hls.stopLoad(); return; } } sendAlternateToPenaltyBox(data) { const hls = this.hls; const errorAction = data.errorAction; if (!errorAction) { return; } const { flags, hdcpLevel, nextAutoLevel } = errorAction; switch (flags) { case ErrorActionFlags.None: this.switchLevel(data, nextAutoLevel); break; case ErrorActionFlags.MoveAllAlternatesMatchingHDCP: if (hdcpLevel) { hls.maxHdcpLevel = HdcpLevels[HdcpLevels.indexOf(hdcpLevel) - 1]; errorAction.resolved = true; } this.warn(`Restricting playback to HDCP-LEVEL of "${hls.maxHdcpLevel}" or lower`); break; } // If not resolved by previous actions try to switch to next level if (!errorAction.resolved) { this.switchLevel(data, nextAutoLevel); } } switchLevel(data, levelIndex) { if (levelIndex !== undefined && data.errorAction) { this.warn(`switching to level ${levelIndex} after ${data.details}`); this.hls.nextAutoLevel = levelIndex; data.errorAction.resolved = true; // Stream controller is responsible for this but won't switch on false start this.hls.nextLoadLevel = this.hls.nextAutoLevel; } } } class BasePlaylistController extends Logger { constructor(hls, logPrefix) { super(logPrefix, hls.logger); this.hls = void 0; this.timer = -1; this.requestScheduled = -1; this.canLoad = false; this.hls = hls; } destroy() { this.clearTimer(); // @ts-ignore this.hls = this.log = this.warn = null; } clearTimer() { if (this.timer !== -1) { self.clearTimeout(this.timer); this.timer = -1; } } startLoad() { this.canLoad = true; this.requestScheduled = -1; this.loadPlaylist(); } stopLoad() { this.canLoad = false; this.clearTimer(); } switchParams(playlistUri, previous) { const renditionReports = previous == null ? void 0 : previous.renditionReports; if (renditionReports) { let foundIndex = -1; for (let i = 0; i < renditionReports.length; i++) { const attr = renditionReports[i]; let uri; try { uri = new self.URL(attr.URI, previous.url).href; } catch (error) { this.warn(`Could not construct new URL for Rendition Report: ${error}`); uri = attr.URI || ''; } // Use exact match. Otherwise, the last partial match, if any, will be used // (Playlist URI includes a query string that the Rendition Report does not) if (uri === playlistUri) { foundIndex = i; break; } else if (uri === playlistUri.substring(0, uri.length)) { foundIndex = i; } } if (foundIndex !== -1) { const attr = renditionReports[foundIndex]; const msn = parseInt(attr['LAST-MSN']) || (previous == null ? void 0 : previous.lastPartSn); let part = parseInt(attr['LAST-PART']) || (previous == null ? void 0 : previous.lastPartIndex); if (this.hls.config.lowLatencyMode) { const currentGoal = Math.min(previous.age - previous.partTarget, previous.targetduration); if (part >= 0 && currentGoal > previous.partTarget) { part += 1; } } return new HlsUrlParameters(msn, part >= 0 ? part : undefined, HlsSkip.No); } } } loadPlaylist(hlsUrlParameters) { if (this.requestScheduled === -1) { this.requestScheduled = self.performance.now(); } // Loading is handled by the subclasses } shouldLoadPlaylist(playlist) { return this.canLoad && !!playlist && !!playlist.url && (!playlist.details || playlist.details.live); } shouldReloadPlaylist(playlist) { return this.timer === -1 && this.requestScheduled === -1 && this.shouldLoadPlaylist(playlist); } playlistLoaded(index, data, previousDetails) { const { details, stats } = data; // Set last updated date-time const now = self.performance.now(); const elapsed = stats.loading.first ? Math.max(0, now - stats.loading.first) : 0; details.advancedDateTime = Date.now() - elapsed; // if current playlist is a live playlist, arm a timer to reload it if (details.live || previousDetails != null && previousDetails.live) { details.reloaded(previousDetails); if (previousDetails) { this.log(`live playlist ${index} ${details.advanced ? 'REFRESHED ' + details.lastPartSn + '-' + details.lastPartIndex : details.updated ? 'UPDATED' : 'MISSED'}`); } // Merge live playlists to adjust fragment starts and fill in delta playlist skipped segments if (previousDetails && details.fragments.length > 0) { mergeDetails(previousDetails, details); } if (!this.canLoad || !details.live) { return; } let deliveryDirectives; let msn = undefined; let part = undefined; if (details.canBlockReload && details.endSN && details.advanced) { // Load level with LL-HLS delivery directives const lowLatencyMode = this.hls.config.lowLatencyMode; const lastPartSn = details.lastPartSn; const endSn = details.endSN; const lastPartIndex = details.lastPartIndex; const hasParts = lastPartIndex !== -1; const lastPart = lastPartSn === endSn; // When low latency mode is disabled, we'll skip part requests once the last part index is found const nextSnStartIndex = lowLatencyMode ? 0 : lastPartIndex; if (hasParts) { msn = lastPart ? endSn + 1 : lastPartSn; part = lastPart ? nextSnStartIndex : lastPartIndex + 1; } else { msn = endSn + 1; } // Low-Latency CDN Tune-in: "age" header and time since load indicates we're behind by more than one part // Update directives to obtain the Playlist that has the estimated additional duration of media const lastAdvanced = details.age; const cdnAge = lastAdvanced + details.ageHeader; let currentGoal = Math.min(cdnAge - details.partTarget, details.targetduration * 1.5); if (currentGoal > 0) { if (previousDetails && currentGoal > previousDetails.tuneInGoal) { // If we attempted to get the next or latest playlist update, but currentGoal increased, // then we either can't catchup, or the "age" header cannot be trusted. this.warn(`CDN Tune-in goal increased from: ${previousDetails.tuneInGoal} to: ${currentGoal} with playlist age: ${details.age}`); currentGoal = 0; } else { const segments = Math.floor(currentGoal / details.targetduration); msn += segments; if (part !== undefined) { const parts = Math.round(currentGoal % details.targetduration / details.partTarget); part += parts; } this.log(`CDN Tune-in age: ${details.ageHeader}s last advanced ${lastAdvanced.toFixed(2)}s goal: ${currentGoal} skip sn ${segments} to part ${part}`); } details.tuneInGoal = currentGoal; } deliveryDirectives = this.getDeliveryDirectives(details, data.deliveryDirectives, msn, part); if (lowLatencyMode || !lastPart) { this.loadPlaylist(deliveryDirectives); return; } } else if (details.canBlockReload || details.canSkipUntil) { deliveryDirectives = this.getDeliveryDirectives(details, data.deliveryDirectives, msn, part); } const bufferInfo = this.hls.mainForwardBufferInfo; const position = bufferInfo ? bufferInfo.end - bufferInfo.len : 0; const distanceToLiveEdgeMs = (details.edge - position) * 1000; const reloadInterval = computeReloadInterval(details, distanceToLiveEdgeMs); if (details.updated && now > this.requestScheduled + reloadInterval) { this.requestScheduled = stats.loading.start; } if (msn !== undefined && details.canBlockReload) { this.requestScheduled = stats.loading.first + reloadInterval - (details.partTarget * 1000 || 1000); } else if (this.requestScheduled === -1 || this.requestScheduled + reloadInterval < now) { this.requestScheduled = now; } else if (this.requestScheduled - now <= 0) { this.requestScheduled += reloadInterval; } let estimatedTimeUntilUpdate = this.requestScheduled - now; estimatedTimeUntilUpdate = Math.max(0, estimatedTimeUntilUpdate); this.log(`reload live playlist ${index} in ${Math.round(estimatedTimeUntilUpdate)} ms`); // this.log( // `live reload ${details.updated ? 'REFRESHED' : 'MISSED'} // reload in ${estimatedTimeUntilUpdate / 1000} // round trip ${(stats.loading.end - stats.loading.start) / 1000} // diff ${ // (reloadInterval - // (estimatedTimeUntilUpdate + // stats.loading.end - // stats.loading.start)) / // 1000 // } // reload interval ${reloadInterval / 1000} // target duration ${details.targetduration} // distance to edge ${distanceToLiveEdgeMs / 1000}` // ); this.timer = self.setTimeout(() => this.loadPlaylist(deliveryDirectives), estimatedTimeUntilUpdate); } else { this.clearTimer(); } } getDeliveryDirectives(details, previousDeliveryDirectives, msn, part) { let skip = getSkipValue(details, msn); if (previousDeliveryDirectives != null && previousDeliveryDirectives.skip && details.deltaUpdateFailed) { msn = previousDeliveryDirectives.msn; part = previousDeliveryDirectives.part; skip = HlsSkip.No; } return new HlsUrlParameters(msn, part, skip); } checkRetry(errorEvent) { const errorDetails = errorEvent.details; const isTimeout = isTimeoutError(errorEvent); const errorAction = errorEvent.errorAction; const { action, retryCount = 0, retryConfig } = errorAction || {}; const retry = !!errorAction && !!retryConfig && (action === NetworkErrorAction.RetryRequest || !errorAction.resolved && action === NetworkErrorAction.SendAlternateToPenaltyBox); if (retry) { var _errorEvent$context; this.requestScheduled = -1; if (retryCount >= retryConfig.maxNumRetry) { return false; } if (isTimeout && (_errorEvent$context = errorEvent.context) != null && _errorEvent$context.deliveryDirectives) { // The LL-HLS request already timed out so retry immediately this.warn(`Retrying playlist loading ${retryCount + 1}/${retryConfig.maxNumRetry} after "${errorDetails}" without delivery-directives`); this.loadPlaylist(); } else { const delay = getRetryDelay(retryConfig, retryCount); // Schedule level/track reload this.timer = self.setTimeout(() => this.loadPlaylist(), delay); this.warn(`Retrying playlist loading ${retryCount + 1}/${retryConfig.maxNumRetry} after "${errorDetails}" in ${delay}ms`); } // `levelRetry = true` used to inform other controllers that a retry is happening errorEvent.levelRetry = true; errorAction.resolved = true; } return retry; } } /* * compute an Exponential Weighted moving average * - https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average * - heavily inspired from shaka-player */ class EWMA { // About half of the estimated value will be from the last |halfLife| samples by weight. constructor(halfLife, estimate = 0, weight = 0) { this.halfLife = void 0; this.alpha_ = void 0; this.estimate_ = void 0; this.totalWeight_ = void 0; this.halfLife = halfLife; // Larger values of alpha expire historical data more slowly. this.alpha_ = halfLife ? Math.exp(Math.log(0.5) / halfLife) : 0; this.estimate_ = estimate; this.totalWeight_ = weight; } sample(weight, value) { const adjAlpha = Math.pow(this.alpha_, weight); this.estimate_ = value * (1 - adjAlpha) + adjAlpha * this.estimate_; this.totalWeight_ += weight; } getTotalWeight() { return this.totalWeight_; } getEstimate() { if (this.alpha_) { const zeroFactor = 1 - Math.pow(this.alpha_, this.totalWeight_); if (zeroFactor) { return this.estimate_ / zeroFactor; } } return this.estimate_; } } /* * EWMA Bandwidth Estimator * - heavily inspired from shaka-player * Tracks bandwidth samples and estimates available bandwidth. * Based on the minimum of two exponentially-weighted moving averages with * different half-lives. */ class EwmaBandWidthEstimator { constructor(slow, fast, defaultEstimate, defaultTTFB = 100) { this.defaultEstimate_ = void 0; this.minWeight_ = void 0; this.minDelayMs_ = void 0; this.slow_ = void 0; this.fast_ = void 0; this.defaultTTFB_ = void 0; this.ttfb_ = void 0; this.defaultEstimate_ = defaultEstimate; this.minWeight_ = 0.001; this.minDelayMs_ = 50; this.slow_ = new EWMA(slow); this.fast_ = new EWMA(fast); this.defaultTTFB_ = defaultTTFB; this.ttfb_ = new EWMA(slow); } update(slow, fast) { const { slow_, fast_, ttfb_ } = this; if (slow_.halfLife !== slow) { this.slow_ = new EWMA(slow, slow_.getEstimate(), slow_.getTotalWeight()); } if (fast_.halfLife !== fast) { this.fast_ = new EWMA(fast, fast_.getEstimate(), fast_.getTotalWeight()); } if (ttfb_.halfLife !== slow) { this.ttfb_ = new EWMA(slow, ttfb_.getEstimate(), ttfb_.getTotalWeight()); } } sample(durationMs, numBytes) { durationMs = Math.max(durationMs, this.minDelayMs_); const numBits = 8 * numBytes; // weight is duration in seconds const durationS = durationMs / 1000; // value is bandwidth in bits/s const bandwidthInBps = numBits / durationS; this.fast_.sample(durationS, bandwidthInBps); this.slow_.sample(durationS, bandwidthInBps); } sampleTTFB(ttfb) { // weight is frequency curve applied to TTFB in seconds // (longer times have less weight with expected input under 1 second) const seconds = ttfb / 1000; const weight = Math.sqrt(2) * Math.exp(-Math.pow(seconds, 2) / 2); this.ttfb_.sample(weight, Math.max(ttfb, 5)); } canEstimate() { return this.fast_.getTotalWeight() >= this.minWeight_; } getEstimate() { if (this.canEstimate()) { // console.log('slow estimate:'+ Math.round(this.slow_.getEstimate())); // console.log('fast estimate:'+ Math.round(this.fast_.getEstimate())); // Take the minimum of these two estimates. This should have the effect of // adapting down quickly, but up more slowly. return Math.min(this.fast_.getEstimate(), this.slow_.getEstimate()); } else { return this.defaultEstimate_; } } getEstimateTTFB() { if (this.ttfb_.getTotalWeight() >= this.minWeight_) { return this.ttfb_.getEstimate(); } else { return this.defaultTTFB_; } } destroy() {} } /** * @returns Whether we can detect and validate HDR capability within the window context */ function isHdrSupported() { if (typeof matchMedia === 'function') { const mediaQueryList = matchMedia('(dynamic-range: high)'); const badQuery = matchMedia('bad query'); if (mediaQueryList.media !== badQuery.media) { return mediaQueryList.matches === true; } } return false; } /** * Sanitizes inputs to return the active video selection options for HDR/SDR. * When both inputs are null: * * `{ preferHDR: false, allowedVideoRanges: [] }` * * When `currentVideoRange` non-null, maintain the active range: * * `{ preferHDR: currentVideoRange !== 'SDR', allowedVideoRanges: [currentVideoRange] }` * * When VideoSelectionOption non-null: * * - Allow all video ranges if `allowedVideoRanges` unspecified. * - If `preferHDR` is non-null use the value to filter `allowedVideoRanges`. * - Else check window for HDR support and set `preferHDR` to the result. * * @param currentVideoRange * @param videoPreference */ function getVideoSelectionOptions(currentVideoRange, videoPreference) { let preferHDR = false; let allowedVideoRanges = []; if (currentVideoRange) { preferHDR = currentVideoRange !== 'SDR'; allowedVideoRanges = [currentVideoRange]; } if (videoPreference) { allowedVideoRanges = videoPreference.allowedVideoRanges || VideoRangeValues.slice(0); preferHDR = videoPreference.preferHDR !== undefined ? videoPreference.preferHDR : isHdrSupported(); if (preferHDR) { allowedVideoRanges = allowedVideoRanges.filter(range => range !== 'SDR'); } else { allowedVideoRanges = ['SDR']; } } return { preferHDR, allowedVideoRanges }; } function getStartCodecTier(codecTiers, currentVideoRange, currentBw, audioPreference, videoPreference) { const codecSets = Object.keys(codecTiers); const channelsPreference = audioPreference == null ? void 0 : audioPreference.channels; const audioCodecPreference = audioPreference == null ? void 0 : audioPreference.audioCodec; const preferStereo = channelsPreference && parseInt(channelsPreference) === 2; // Use first level set to determine stereo, and minimum resolution and framerate let hasStereo = true; let hasCurrentVideoRange = false; let minHeight = Infinity; let minFramerate = Infinity; let minBitrate = Infinity; let selectedScore = 0; let videoRanges = []; const { preferHDR, allowedVideoRanges } = getVideoSelectionOptions(currentVideoRange, videoPreference); for (let i = codecSets.length; i--;) { const tier = codecTiers[codecSets[i]]; hasStereo = tier.channels[2] > 0; minHeight = Math.min(minHeight, tier.minHeight); minFramerate = Math.min(minFramerate, tier.minFramerate); minBitrate = Math.min(minBitrate, tier.minBitrate); const matchingVideoRanges = allowedVideoRanges.filter(range => tier.videoRanges[range] > 0); if (matchingVideoRanges.length > 0) { hasCurrentVideoRange = true; videoRanges = matchingVideoRanges; } } minHeight = isFiniteNumber(minHeight) ? minHeight : 0; minFramerate = isFiniteNumber(minFramerate) ? minFramerate : 0; const maxHeight = Math.max(1080, minHeight); const maxFramerate = Math.max(30, minFramerate); minBitrate = isFiniteNumber(minBitrate) ? minBitrate : currentBw; currentBw = Math.max(minBitrate, currentBw); // If there are no variants with matching preference, set currentVideoRange to undefined if (!hasCurrentVideoRange) { currentVideoRange = undefined; videoRanges = []; } const codecSet = codecSets.reduce((selected, candidate) => { // Remove candiates which do not meet bitrate, default audio, stereo or channels preference, 1080p or lower, 30fps or lower, or SDR/HDR selection if present const candidateTier = codecTiers[candidate]; if (candidate === selected) { return selected; } if (candidateTier.minBitrate > currentBw) { logStartCodecCandidateIgnored(candidate, `min bitrate of ${candidateTier.minBitrate} > current estimate of ${currentBw}`); return selected; } if (!candidateTier.hasDefaultAudio) { logStartCodecCandidateIgnored(candidate, `no renditions with default or auto-select sound found`); return selected; } if (audioCodecPreference && candidate.indexOf(audioCodecPreference.substring(0, 4)) % 5 !== 0) { logStartCodecCandidateIgnored(candidate, `audio codec preference "${audioCodecPreference}" not found`); return selected; } if (channelsPreference && !preferStereo) { if (!candidateTier.channels[channelsPreference]) { logStartCodecCandidateIgnored(candidate, `no renditions with ${channelsPreference} channel sound found (channels options: ${Object.keys(candidateTier.channels)})`); return selected; } } else if ((!audioCodecPreference || preferStereo) && hasStereo && candidateTier.channels['2'] === 0) { logStartCodecCandidateIgnored(candidate, `no renditions with stereo sound found`); return selected; } if (candidateTier.minHeight > maxHeight) { logStartCodecCandidateIgnored(candidate, `min resolution of ${candidateTier.minHeight} > maximum of ${maxHeight}`); return selected; } if (candidateTier.minFramerate > maxFramerate) { logStartCodecCandidateIgnored(candidate, `min framerate of ${candidateTier.minFramerate} > maximum of ${maxFramerate}`); return selected; } if (!videoRanges.some(range => candidateTier.videoRanges[range] > 0)) { logStartCodecCandidateIgnored(candidate, `no variants with VIDEO-RANGE of ${JSON.stringify(videoRanges)} found`); return selected; } if (candidateTier.maxScore < selectedScore) { logStartCodecCandidateIgnored(candidate, `max score of ${candidateTier.maxScore} < selected max of ${selectedScore}`); return selected; } // Remove candiates with less preferred codecs or more errors if (selected && (codecsSetSelectionPreferenceValue(candidate) >= codecsSetSelectionPreferenceValue(selected) || candidateTier.fragmentError > codecTiers[selected].fragmentError)) { return selected; } selectedScore = candidateTier.maxScore; return candidate; }, undefined); return { codecSet, videoRanges, preferHDR, minFramerate, minBitrate }; } function logStartCodecCandidateIgnored(codeSet, reason) { logger.log(`[abr] start candidates with "${codeSet}" ignored because ${reason}`); } function getAudioTracksByGroup(allAudioTracks) { return allAudioTracks.reduce((audioTracksByGroup, track) => { let trackGroup = audioTracksByGroup.groups[track.groupId]; if (!trackGroup) { trackGroup = audioTracksByGroup.groups[track.groupId] = { tracks: [], channels: { 2: 0 }, hasDefault: false, hasAutoSelect: false }; } trackGroup.tracks.push(track); const channelsKey = track.channels || '2'; trackGroup.channels[channelsKey] = (trackGroup.channels[channelsKey] || 0) + 1; trackGroup.hasDefault = trackGroup.hasDefault || track.default; trackGroup.hasAutoSelect = trackGroup.hasAutoSelect || track.autoselect; if (trackGroup.hasDefault) { audioTracksByGroup.hasDefaultAudio = true; } if (trackGroup.hasAutoSelect) { audioTracksByGroup.hasAutoSelectAudio = true; } return audioTracksByGroup; }, { hasDefaultAudio: false, hasAutoSelectAudio: false, groups: {} }); } function getCodecTiers(levels, audioTracksByGroup, minAutoLevel, maxAutoLevel) { return levels.slice(minAutoLevel, maxAutoLevel + 1).reduce((tiers, level) => { if (!level.codecSet) { return tiers; } const audioGroups = level.audioGroups; let tier = tiers[level.codecSet]; if (!tier) { tiers[level.codecSet] = tier = { minBitrate: Infinity, minHeight: Infinity, minFramerate: Infinity, maxScore: 0, videoRanges: { SDR: 0 }, channels: { '2': 0 }, hasDefaultAudio: !audioGroups, fragmentError: 0 }; } tier.minBitrate = Math.min(tier.minBitrate, level.bitrate); const lesserWidthOrHeight = Math.min(level.height, level.width); tier.minHeight = Math.min(tier.minHeight, lesserWidthOrHeight); tier.minFramerate = Math.min(tier.minFramerate, level.frameRate); tier.maxScore = Math.max(tier.maxScore, level.score); tier.fragmentError += level.fragmentError; tier.videoRanges[level.videoRange] = (tier.videoRanges[level.videoRange] || 0) + 1; if (audioGroups) { audioGroups.forEach(audioGroupId => { if (!audioGroupId) { return; } const audioGroup = audioTracksByGroup.groups[audioGroupId]; // Default audio is any group with DEFAULT=YES, or if missing then any group with AUTOSELECT=YES, or all variants tier.hasDefaultAudio = tier.hasDefaultAudio || audioTracksByGroup.hasDefaultAudio ? audioGroup.hasDefault : audioGroup.hasAutoSelect || !audioTracksByGroup.hasDefaultAudio && !audioTracksByGroup.hasAutoSelectAudio; Object.keys(audioGroup.channels).forEach(channels => { tier.channels[channels] = (tier.channels[channels] || 0) + audioGroup.channels[channels]; }); }); } return tiers; }, {}); } class AbrController extends Logger { constructor(_hls) { super('abr', _hls.logger); this.hls = void 0; this.lastLevelLoadSec = 0; this.lastLoadedFragLevel = -1; this.firstSelection = -1; this._nextAutoLevel = -1; this.nextAutoLevelKey = ''; this.audioTracksByGroup = null; this.codecTiers = null; this.timer = -1; this.fragCurrent = null; this.partCurrent = null; this.bitrateTestDelay = 0; this.bwEstimator = void 0; /* This method monitors the download rate of the current fragment, and will downswitch if that fragment will not load quickly enough to prevent underbuffering */ this._abandonRulesCheck = () => { const { fragCurrent: frag, partCurrent: part, hls } = this; const { autoLevelEnabled, media } = hls; if (!frag || !media) { return; } const now = performance.now(); const stats = part ? part.stats : frag.stats; const duration = part ? part.duration : frag.duration; const timeLoading = now - stats.loading.start; const minAutoLevel = hls.minAutoLevel; // If frag loading is aborted, complete, or from lowest level, stop timer and return if (stats.aborted || stats.loaded && stats.loaded === stats.total || frag.level <= minAutoLevel) { this.clearTimer(); // reset forced auto level value so that next level will be selected this._nextAutoLevel = -1; return; } // This check only runs if we're in ABR mode and actually playing if (!autoLevelEnabled || media.paused || !media.playbackRate || !media.readyState) { return; } const bufferInfo = hls.mainForwardBufferInfo; if (bufferInfo === null) { return; } const ttfbEstimate = this.bwEstimator.getEstimateTTFB(); const playbackRate = Math.abs(media.playbackRate); // To maintain stable adaptive playback, only begin monitoring frag loading after half or more of its playback duration has passed if (timeLoading <= Math.max(ttfbEstimate, 1000 * (duration / (playbackRate * 2)))) { return; } // bufferStarvationDelay is an estimate of the amount time (in seconds) it will take to exhaust the buffer const bufferStarvationDelay = bufferInfo.len / playbackRate; const ttfb = stats.loading.first ? stats.loading.first - stats.loading.start : -1; const loadedFirstByte = stats.loaded && ttfb > -1; const bwEstimate = this.getBwEstimate(); const levels = hls.levels; const level = levels[frag.level]; const expectedLen = stats.total || Math.max(stats.loaded, Math.round(duration * level.averageBitrate / 8)); let timeStreaming = loadedFirstByte ? timeLoading - ttfb : timeLoading; if (timeStreaming < 1 && loadedFirstByte) { timeStreaming = Math.min(timeLoading, stats.loaded * 8 / bwEstimate); } const loadRate = loadedFirstByte ? stats.loaded * 1000 / timeStreaming : 0; // fragLoadDelay is an estimate of the time (in seconds) it will take to buffer the remainder of the fragment const fragLoadedDelay = loadRate ? (expectedLen - stats.loaded) / loadRate : expectedLen * 8 / bwEstimate + ttfbEstimate / 1000; // Only downswitch if the time to finish loading the current fragment is greater than the amount of buffer left if (fragLoadedDelay <= bufferStarvationDelay) { return; } const bwe = loadRate ? loadRate * 8 : bwEstimate; let fragLevelNextLoadedDelay = Number.POSITIVE_INFINITY; let nextLoadLevel; // Iterate through lower level and try to find the largest one that avoids rebuffering for (nextLoadLevel = frag.level - 1; nextLoadLevel > minAutoLevel; nextLoadLevel--) { // compute time to load next fragment at lower level // 8 = bits per byte (bps/Bps) const levelNextBitrate = levels[nextLoadLevel].maxBitrate; fragLevelNextLoadedDelay = this.getTimeToLoadFrag(ttfbEstimate / 1000, bwe, duration * levelNextBitrate, !levels[nextLoadLevel].details); if (fragLevelNextLoadedDelay < bufferStarvationDelay) { break; } } // Only emergency switch down if it takes less time to load a new fragment at lowest level instead of continuing // to load the current one if (fragLevelNextLoadedDelay >= fragLoadedDelay) { return; } // if estimated load time of new segment is completely unreasonable, ignore and do not emergency switch down if (fragLevelNextLoadedDelay > duration * 10) { return; } hls.nextLoadLevel = hls.nextAutoLevel = nextLoadLevel; if (loadedFirstByte) { // If there has been loading progress, sample bandwidth using loading time offset by minimum TTFB time this.bwEstimator.sample(timeLoading - Math.min(ttfbEstimate, ttfb), stats.loaded); } else { // If there has been no loading progress, sample TTFB this.bwEstimator.sampleTTFB(timeLoading); } const nextLoadLevelBitrate = levels[nextLoadLevel].maxBitrate; if (this.getBwEstimate() * this.hls.config.abrBandWidthUpFactor > nextLoadLevelBitrate) { this.resetEstimator(nextLoadLevelBitrate); } this.clearTimer(); this.warn(`Fragment ${frag.sn}${part ? ' part ' + part.index : ''} of level ${frag.level} is loading too slowly; Time to underbuffer: ${bufferStarvationDelay.toFixed(3)} s Estimated load time for current fragment: ${fragLoadedDelay.toFixed(3)} s Estimated load time for down switch fragment: ${fragLevelNextLoadedDelay.toFixed(3)} s TTFB estimate: ${ttfb | 0} ms Current BW estimate: ${isFiniteNumber(bwEstimate) ? bwEstimate | 0 : 'Unknown'} bps New BW estimate: ${this.getBwEstimate() | 0} bps Switching to level ${nextLoadLevel} @ ${nextLoadLevelBitrate | 0} bps`); hls.trigger(Events.FRAG_LOAD_EMERGENCY_ABORTED, { frag, part, stats }); }; this.hls = _hls; this.bwEstimator = this.initEstimator(); this.registerListeners(); } resetEstimator(abrEwmaDefaultEstimate) { if (abrEwmaDefaultEstimate) { this.log(`setting initial bwe to ${abrEwmaDefaultEstimate}`); this.hls.config.abrEwmaDefaultEstimate = abrEwmaDefaultEstimate; } this.firstSelection = -1; this.bwEstimator = this.initEstimator(); } initEstimator() { const config = this.hls.config; return new EwmaBandWidthEstimator(config.abrEwmaSlowVoD, config.abrEwmaFastVoD, config.abrEwmaDefaultEstimate); } registerListeners() { const { hls } = this; hls.on(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.on(Events.FRAG_LOADING, this.onFragLoading, this); hls.on(Events.FRAG_LOADED, this.onFragLoaded, this); hls.on(Events.FRAG_BUFFERED, this.onFragBuffered, this); hls.on(Events.LEVEL_SWITCHING, this.onLevelSwitching, this); hls.on(Events.LEVEL_LOADED, this.onLevelLoaded, this); hls.on(Events.LEVELS_UPDATED, this.onLevelsUpdated, this); hls.on(Events.MAX_AUTO_LEVEL_UPDATED, this.onMaxAutoLevelUpdated, this); hls.on(Events.ERROR, this.onError, this); } unregisterListeners() { const { hls } = this; if (!hls) { return; } hls.off(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.off(Events.FRAG_LOADING, this.onFragLoading, this); hls.off(Events.FRAG_LOADED, this.onFragLoaded, this); hls.off(Events.FRAG_BUFFERED, this.onFragBuffered, this); hls.off(Events.LEVEL_SWITCHING, this.onLevelSwitching, this); hls.off(Events.LEVEL_LOADED, this.onLevelLoaded, this); hls.off(Events.LEVELS_UPDATED, this.onLevelsUpdated, this); hls.off(Events.MAX_AUTO_LEVEL_UPDATED, this.onMaxAutoLevelUpdated, this); hls.off(Events.ERROR, this.onError, this); } destroy() { this.unregisterListeners(); this.clearTimer(); // @ts-ignore this.hls = this._abandonRulesCheck = null; this.fragCurrent = this.partCurrent = null; } onManifestLoading(event, data) { this.lastLoadedFragLevel = -1; this.firstSelection = -1; this.lastLevelLoadSec = 0; this.fragCurrent = this.partCurrent = null; this.onLevelsUpdated(); this.clearTimer(); } onLevelsUpdated() { if (this.lastLoadedFragLevel > -1 && this.fragCurrent) { this.lastLoadedFragLevel = this.fragCurrent.level; } this._nextAutoLevel = -1; this.onMaxAutoLevelUpdated(); this.codecTiers = null; this.audioTracksByGroup = null; } onMaxAutoLevelUpdated() { this.firstSelection = -1; this.nextAutoLevelKey = ''; } onFragLoading(event, data) { const frag = data.frag; if (this.ignoreFragment(frag)) { return; } if (!frag.bitrateTest) { var _data$part; this.fragCurrent = frag; this.partCurrent = (_data$part = data.part) != null ? _data$part : null; } this.clearTimer(); this.timer = self.setInterval(this._abandonRulesCheck, 100); } onLevelSwitching(event, data) { this.clearTimer(); } onError(event, data) { if (data.fatal) { return; } switch (data.details) { case ErrorDetails.BUFFER_ADD_CODEC_ERROR: case ErrorDetails.BUFFER_APPEND_ERROR: // Reset last loaded level so that a new selection can be made after calling recoverMediaError this.lastLoadedFragLevel = -1; this.firstSelection = -1; break; case ErrorDetails.FRAG_LOAD_TIMEOUT: { const frag = data.frag; const { fragCurrent, partCurrent: part } = this; if (frag && fragCurrent && frag.sn === fragCurrent.sn && frag.level === fragCurrent.level) { const now = performance.now(); const stats = part ? part.stats : frag.stats; const timeLoading = now - stats.loading.start; const ttfb = stats.loading.first ? stats.loading.first - stats.loading.start : -1; const loadedFirstByte = stats.loaded && ttfb > -1; if (loadedFirstByte) { const ttfbEstimate = this.bwEstimator.getEstimateTTFB(); this.bwEstimator.sample(timeLoading - Math.min(ttfbEstimate, ttfb), stats.loaded); } else { this.bwEstimator.sampleTTFB(timeLoading); } } break; } } } getTimeToLoadFrag(timeToFirstByteSec, bandwidth, fragSizeBits, isSwitch) { const fragLoadSec = timeToFirstByteSec + fragSizeBits / bandwidth; const playlistLoadSec = isSwitch ? this.lastLevelLoadSec : 0; return fragLoadSec + playlistLoadSec; } onLevelLoaded(event, data) { const config = this.hls.config; const { loading } = data.stats; const timeLoadingMs = loading.end - loading.start; if (isFiniteNumber(timeLoadingMs)) { this.lastLevelLoadSec = timeLoadingMs / 1000; } if (data.details.live) { this.bwEstimator.update(config.abrEwmaSlowLive, config.abrEwmaFastLive); } else { this.bwEstimator.update(config.abrEwmaSlowVoD, config.abrEwmaFastVoD); } } onFragLoaded(event, { frag, part }) { const stats = part ? part.stats : frag.stats; if (frag.type === PlaylistLevelType.MAIN) { this.bwEstimator.sampleTTFB(stats.loading.first - stats.loading.start); } if (this.ignoreFragment(frag)) { return; } // stop monitoring bw once frag loaded this.clearTimer(); // reset forced auto level value so that next level will be selected if (frag.level === this._nextAutoLevel) { this._nextAutoLevel = -1; } this.firstSelection = -1; // compute level average bitrate if (this.hls.config.abrMaxWithRealBitrate) { const duration = part ? part.duration : frag.duration; const level = this.hls.levels[frag.level]; const loadedBytes = (level.loaded ? level.loaded.bytes : 0) + stats.loaded; const loadedDuration = (level.loaded ? level.loaded.duration : 0) + duration; level.loaded = { bytes: loadedBytes, duration: loadedDuration }; level.realBitrate = Math.round(8 * loadedBytes / loadedDuration); } if (frag.bitrateTest) { const fragBufferedData = { stats, frag, part, id: frag.type }; this.onFragBuffered(Events.FRAG_BUFFERED, fragBufferedData); frag.bitrateTest = false; } else { // store level id after successful fragment load for playback this.lastLoadedFragLevel = frag.level; } } onFragBuffered(event, data) { const { frag, part } = data; const stats = part != null && part.stats.loaded ? part.stats : frag.stats; if (stats.aborted) { return; } if (this.ignoreFragment(frag)) { return; } // Use the difference between parsing and request instead of buffering and request to compute fragLoadingProcessing; // rationale is that buffer appending only happens once media is attached. This can happen when config.startFragPrefetch // is used. If we used buffering in that case, our BW estimate sample will be very large. const processingMs = stats.parsing.end - stats.loading.start - Math.min(stats.loading.first - stats.loading.start, this.bwEstimator.getEstimateTTFB()); this.bwEstimator.sample(processingMs, stats.loaded); stats.bwEstimate = this.getBwEstimate(); if (frag.bitrateTest) { this.bitrateTestDelay = processingMs / 1000; } else { this.bitrateTestDelay = 0; } } ignoreFragment(frag) { // Only count non-alt-audio frags which were actually buffered in our BW calculations return frag.type !== PlaylistLevelType.MAIN || frag.sn === 'initSegment'; } clearTimer() { if (this.timer > -1) { self.clearInterval(this.timer); this.timer = -1; } } get firstAutoLevel() { const { maxAutoLevel, minAutoLevel } = this.hls; const bwEstimate = this.getBwEstimate(); const maxStartDelay = this.hls.config.maxStarvationDelay; const abrAutoLevel = this.findBestLevel(bwEstimate, minAutoLevel, maxAutoLevel, 0, maxStartDelay, 1, 1); if (abrAutoLevel > -1) { return abrAutoLevel; } const firstLevel = this.hls.firstLevel; const clamped = Math.min(Math.max(firstLevel, minAutoLevel), maxAutoLevel); this.warn(`Could not find best starting auto level. Defaulting to first in playlist ${firstLevel} clamped to ${clamped}`); return clamped; } get forcedAutoLevel() { if (this.nextAutoLevelKey) { return -1; } return this._nextAutoLevel; } // return next auto level get nextAutoLevel() { const forcedAutoLevel = this.forcedAutoLevel; const bwEstimator = this.bwEstimator; const useEstimate = bwEstimator.canEstimate(); const loadedFirstFrag = this.lastLoadedFragLevel > -1; // in case next auto level has been forced, and bw not available or not reliable, return forced value if (forcedAutoLevel !== -1 && (!useEstimate || !loadedFirstFrag || this.nextAutoLevelKey === this.getAutoLevelKey())) { return forcedAutoLevel; } // compute next level using ABR logic const nextABRAutoLevel = useEstimate && loadedFirstFrag ? this.getNextABRAutoLevel() : this.firstAutoLevel; // use forced auto level while it hasn't errored more than ABR selection if (forcedAutoLevel !== -1) { const levels = this.hls.levels; if (levels.length > Math.max(forcedAutoLevel, nextABRAutoLevel) && levels[forcedAutoLevel].loadError <= levels[nextABRAutoLevel].loadError) { return forcedAutoLevel; } } // save result until state has changed this._nextAutoLevel = nextABRAutoLevel; this.nextAutoLevelKey = this.getAutoLevelKey(); return nextABRAutoLevel; } getAutoLevelKey() { var _this$hls$mainForward; return `${this.getBwEstimate()}_${(_this$hls$mainForward = this.hls.mainForwardBufferInfo) == null ? void 0 : _this$hls$mainForward.len}`; } getNextABRAutoLevel() { const { fragCurrent, partCurrent, hls } = this; const { maxAutoLevel, config, minAutoLevel, media } = hls; const currentFragDuration = partCurrent ? partCurrent.duration : fragCurrent ? fragCurrent.duration : 0; // playbackRate is the absolute value of the playback rate; if media.playbackRate is 0, we use 1 to load as // if we're playing back at the normal rate. const playbackRate = media && media.playbackRate !== 0 ? Math.abs(media.playbackRate) : 1.0; const avgbw = this.getBwEstimate(); // bufferStarvationDelay is the wall-clock time left until the playback buffer is exhausted. const bufferInfo = hls.mainForwardBufferInfo; const bufferStarvationDelay = (bufferInfo ? bufferInfo.len : 0) / playbackRate; let bwFactor = config.abrBandWidthFactor; let bwUpFactor = config.abrBandWidthUpFactor; // First, look to see if we can find a level matching with our avg bandwidth AND that could also guarantee no rebuffering at all if (bufferStarvationDelay) { const _bestLevel = this.findBestLevel(avgbw, minAutoLevel, maxAutoLevel, bufferStarvationDelay, 0, bwFactor, bwUpFactor); if (_bestLevel >= 0) { return _bestLevel; } } // not possible to get rid of rebuffering... try to find level that will guarantee less than maxStarvationDelay of rebuffering let maxStarvationDelay = currentFragDuration ? Math.min(currentFragDuration, config.maxStarvationDelay) : config.maxStarvationDelay; if (!bufferStarvationDelay) { // in case buffer is empty, let's check if previous fragment was loaded to perform a bitrate test const bitrateTestDelay = this.bitrateTestDelay; if (bitrateTestDelay) { // if it is the case, then we need to adjust our max starvation delay using maxLoadingDelay config value // max video loading delay used in automatic start level selection : // in that mode ABR controller will ensure that video loading time (ie the time to fetch the first fragment at lowest quality level + // the time to fetch the fragment at the appropriate quality level is less than ```maxLoadingDelay``` ) // cap maxLoadingDelay and ensure it is not bigger 'than bitrate test' frag duration const maxLoadingDelay = currentFragDuration ? Math.min(currentFragDuration, config.maxLoadingDelay) : config.maxLoadingDelay; maxStarvationDelay = maxLoadingDelay - bitrateTestDelay; this.info(`bitrate test took ${Math.round(1000 * bitrateTestDelay)}ms, set first fragment max fetchDuration to ${Math.round(1000 * maxStarvationDelay)} ms`); // don't use conservative factor on bitrate test bwFactor = bwUpFactor = 1; } } const bestLevel = this.findBestLevel(avgbw, minAutoLevel, maxAutoLevel, bufferStarvationDelay, maxStarvationDelay, bwFactor, bwUpFactor); this.info(`${bufferStarvationDelay ? 'rebuffering expected' : 'buffer is empty'}, optimal quality level ${bestLevel}`); if (bestLevel > -1) { return bestLevel; } // If no matching level found, see if min auto level would be a better option const minLevel = hls.levels[minAutoLevel]; const autoLevel = hls.levels[hls.loadLevel]; if ((minLevel == null ? void 0 : minLevel.bitrate) < (autoLevel == null ? void 0 : autoLevel.bitrate)) { return minAutoLevel; } // or if bitrate is not lower, continue to use loadLevel return hls.loadLevel; } getBwEstimate() { return this.bwEstimator.canEstimate() ? this.bwEstimator.getEstimate() : this.hls.config.abrEwmaDefaultEstimate; } findBestLevel(currentBw, minAutoLevel, maxAutoLevel, bufferStarvationDelay, maxStarvationDelay, bwFactor, bwUpFactor) { var _level$details; const maxFetchDuration = bufferStarvationDelay + maxStarvationDelay; const lastLoadedFragLevel = this.lastLoadedFragLevel; const selectionBaseLevel = lastLoadedFragLevel === -1 ? this.hls.firstLevel : lastLoadedFragLevel; const { fragCurrent, partCurrent } = this; const { levels, allAudioTracks, loadLevel, config } = this.hls; if (levels.length === 1) { return 0; } const level = levels[selectionBaseLevel]; const live = !!(level != null && (_level$details = level.details) != null && _level$details.live); const firstSelection = loadLevel === -1 || lastLoadedFragLevel === -1; let currentCodecSet; let currentVideoRange = 'SDR'; let currentFrameRate = (level == null ? void 0 : level.frameRate) || 0; const { audioPreference, videoPreference } = config; const audioTracksByGroup = this.audioTracksByGroup || (this.audioTracksByGroup = getAudioTracksByGroup(allAudioTracks)); if (firstSelection) { if (this.firstSelection !== -1) { return this.firstSelection; } const codecTiers = this.codecTiers || (this.codecTiers = getCodecTiers(levels, audioTracksByGroup, minAutoLevel, maxAutoLevel)); const startTier = getStartCodecTier(codecTiers, currentVideoRange, currentBw, audioPreference, videoPreference); const { codecSet, videoRanges, minFramerate, minBitrate, preferHDR } = startTier; currentCodecSet = codecSet; currentVideoRange = preferHDR ? videoRanges[videoRanges.length - 1] : videoRanges[0]; currentFrameRate = minFramerate; currentBw = Math.max(currentBw, minBitrate); this.log(`picked start tier ${JSON.stringify(startTier)}`); } else { currentCodecSet = level == null ? void 0 : level.codecSet; currentVideoRange = level == null ? void 0 : level.videoRange; } const currentFragDuration = partCurrent ? partCurrent.duration : fragCurrent ? fragCurrent.duration : 0; const ttfbEstimateSec = this.bwEstimator.getEstimateTTFB() / 1000; const levelsSkipped = []; for (let i = maxAutoLevel; i >= minAutoLevel; i--) { var _levelInfo$supportedR; const levelInfo = levels[i]; const upSwitch = i > selectionBaseLevel; if (!levelInfo) { continue; } // skip candidates which change codec-family or video-range, // and which decrease or increase frame-rate for up and down-switch respectfully if (currentCodecSet && levelInfo.codecSet !== currentCodecSet || currentVideoRange && levelInfo.videoRange !== currentVideoRange || upSwitch && currentFrameRate > levelInfo.frameRate || !upSwitch && currentFrameRate > 0 && currentFrameRate < levelInfo.frameRate || levelInfo.supportedResult && !((_levelInfo$supportedR = levelInfo.supportedResult.decodingInfoResults) != null && _levelInfo$supportedR[0].smooth)) { levelsSkipped.push(i); continue; } const levelDetails = levelInfo.details; const avgDuration = (partCurrent ? levelDetails == null ? void 0 : levelDetails.partTarget : levelDetails == null ? void 0 : levelDetails.averagetargetduration) || currentFragDuration; let adjustedbw; // follow algorithm captured from stagefright : // https://android.googlesource.com/platform/frameworks/av/+/master/media/libstagefright/httplive/LiveSession.cpp // Pick the highest bandwidth stream below or equal to estimated bandwidth. // consider only 80% of the available bandwidth, but if we are switching up, // be even more conservative (70%) to avoid overestimating and immediately // switching back. if (!upSwitch) { adjustedbw = bwFactor * currentBw; } else { adjustedbw = bwUpFactor * currentBw; } // Use average bitrate when starvation delay (buffer length) is gt or eq two segment durations and rebuffering is not expected (maxStarvationDelay > 0) const bitrate = currentFragDuration && bufferStarvationDelay >= currentFragDuration * 2 && maxStarvationDelay === 0 ? levels[i].averageBitrate : levels[i].maxBitrate; const fetchDuration = this.getTimeToLoadFrag(ttfbEstimateSec, adjustedbw, bitrate * avgDuration, levelDetails === undefined); const canSwitchWithinTolerance = // if adjusted bw is greater than level bitrate AND adjustedbw >= bitrate && ( // no level change, or new level has no error history i === lastLoadedFragLevel || levelInfo.loadError === 0 && levelInfo.fragmentError === 0) && ( // fragment fetchDuration unknown OR live stream OR fragment fetchDuration less than max allowed fetch duration, then this level matches // we don't account for max Fetch Duration for live streams, this is to avoid switching down when near the edge of live sliding window ... // special case to support startLevel = -1 (bitrateTest) on live streams : in that case we should not exit loop so that findBestLevel will return -1 fetchDuration <= ttfbEstimateSec || !isFiniteNumber(fetchDuration) || live && !this.bitrateTestDelay || fetchDuration < maxFetchDuration); if (canSwitchWithinTolerance) { const forcedAutoLevel = this.forcedAutoLevel; if (i !== loadLevel && (forcedAutoLevel === -1 || forcedAutoLevel !== loadLevel)) { if (levelsSkipped.length) { this.trace(`Skipped level(s) ${levelsSkipped.join(',')} of ${maxAutoLevel} max with CODECS and VIDEO-RANGE:"${levels[levelsSkipped[0]].codecs}" ${levels[levelsSkipped[0]].videoRange}; not compatible with "${level.codecs}" ${currentVideoRange}`); } this.info(`switch candidate:${selectionBaseLevel}->${i} adjustedbw(${Math.round(adjustedbw)})-bitrate=${Math.round(adjustedbw - bitrate)} ttfb:${ttfbEstimateSec.toFixed(1)} avgDuration:${avgDuration.toFixed(1)} maxFetchDuration:${maxFetchDuration.toFixed(1)} fetchDuration:${fetchDuration.toFixed(1)} firstSelection:${firstSelection} codecSet:${currentCodecSet} videoRange:${currentVideoRange} hls.loadLevel:${loadLevel}`); } if (firstSelection) { this.firstSelection = i; } // as we are looping from highest to lowest, this will return the best achievable quality level return i; } } // not enough time budget even with quality level 0 ... rebuffering might happen return -1; } set nextAutoLevel(nextLevel) { const value = Math.max(this.hls.minAutoLevel, nextLevel); if (this._nextAutoLevel != value) { this.nextAutoLevelKey = ''; this._nextAutoLevel = value; } } } /** * Provides methods dealing with buffer length retrieval for example. * * In general, a helper around HTML5 MediaElement TimeRanges gathered from `buffered` property. * * Also @see https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/buffered */ const noopBuffered = { length: 0, start: () => 0, end: () => 0 }; class BufferHelper { /** * Return true if `media`'s buffered include `position` */ static isBuffered(media, position) { try { if (media) { const buffered = BufferHelper.getBuffered(media); for (let i = 0; i < buffered.length; i++) { if (position >= buffered.start(i) && position <= buffered.end(i)) { return true; } } } } catch (error) { // this is to catch // InvalidStateError: Failed to read the 'buffered' property from 'SourceBuffer': // This SourceBuffer has been removed from the parent media source } return false; } static bufferInfo(media, pos, maxHoleDuration) { try { if (media) { const vbuffered = BufferHelper.getBuffered(media); const buffered = []; let i; for (i = 0; i < vbuffered.length; i++) { buffered.push({ start: vbuffered.start(i), end: vbuffered.end(i) }); } return this.bufferedInfo(buffered, pos, maxHoleDuration); } } catch (error) { // this is to catch // InvalidStateError: Failed to read the 'buffered' property from 'SourceBuffer': // This SourceBuffer has been removed from the parent media source } return { len: 0, start: pos, end: pos, nextStart: undefined }; } static bufferedInfo(buffered, pos, maxHoleDuration) { pos = Math.max(0, pos); // sort on buffer.start/smaller end (IE does not always return sorted buffered range) buffered.sort(function (a, b) { const diff = a.start - b.start; if (diff) { return diff; } else { return b.end - a.end; } }); let buffered2 = []; if (maxHoleDuration) { // there might be some small holes between buffer time range // consider that holes smaller than maxHoleDuration are irrelevant and build another // buffer time range representations that discards those holes for (let i = 0; i < buffered.length; i++) { const buf2len = buffered2.length; if (buf2len) { const buf2end = buffered2[buf2len - 1].end; // if small hole (value between 0 or maxHoleDuration ) or overlapping (negative) if (buffered[i].start - buf2end < maxHoleDuration) { // merge overlapping time ranges // update lastRange.end only if smaller than item.end // e.g. [ 1, 15] with [ 2,8] => [ 1,15] (no need to modify lastRange.end) // whereas [ 1, 8] with [ 2,15] => [ 1,15] ( lastRange should switch from [1,8] to [1,15]) if (buffered[i].end > buf2end) { buffered2[buf2len - 1].end = buffered[i].end; } } else { // big hole buffered2.push(buffered[i]); } } else { // first value buffered2.push(buffered[i]); } } } else { buffered2 = buffered; } let bufferLen = 0; // bufferStartNext can possibly be undefined based on the conditional logic below let bufferStartNext; // bufferStart and bufferEnd are buffer boundaries around current video position let bufferStart = pos; let bufferEnd = pos; for (let i = 0; i < buffered2.length; i++) { const start = buffered2[i].start; const end = buffered2[i].end; // logger.log('buf start/end:' + buffered.start(i) + '/' + buffered.end(i)); if (pos + maxHoleDuration >= start && pos < end) { // play position is inside this buffer TimeRange, retrieve end of buffer position and buffer length bufferStart = start; bufferEnd = end; bufferLen = bufferEnd - pos; } else if (pos + maxHoleDuration < start) { bufferStartNext = start; break; } } return { len: bufferLen, start: bufferStart || 0, end: bufferEnd || 0, nextStart: bufferStartNext }; } /** * Safe method to get buffered property. * SourceBuffer.buffered may throw if SourceBuffer is removed from it's MediaSource */ static getBuffered(media) { try { return media.buffered; } catch (e) { logger.log('failed to get media.buffered', e); return noopBuffered; } } } class BufferOperationQueue { constructor(sourceBufferReference) { this.buffers = void 0; this.queues = { video: [], audio: [], audiovideo: [] }; this.buffers = sourceBufferReference; } append(operation, type, pending) { const queue = this.queues[type]; queue.push(operation); if (queue.length === 1 && !pending) { this.executeNext(type); } } insertAbort(operation, type) { const queue = this.queues[type]; queue.unshift(operation); this.executeNext(type); } appendBlocker(type) { let execute; const promise = new Promise(resolve => { execute = resolve; }); const operation = { execute, onStart: () => {}, onComplete: () => {}, onError: () => {} }; this.append(operation, type); return promise; } executeNext(type) { const queue = this.queues[type]; if (queue.length) { const operation = queue[0]; try { // Operations are expected to result in an 'updateend' event being fired. If not, the queue will lock. Operations // which do not end with this event must call _onSBUpdateEnd manually operation.execute(); } catch (error) { logger.warn(`[buffer-operation-queue]: Exception executing "${type}" SourceBuffer operation: ${error}`); operation.onError(error); // Only shift the current operation off, otherwise the updateend handler will do this for us const sb = this.buffers[type]; if (!(sb != null && sb.updating)) { this.shiftAndExecuteNext(type); } } } } shiftAndExecuteNext(type) { this.queues[type].shift(); this.executeNext(type); } current(type) { return this.queues[type][0]; } } const VIDEO_CODEC_PROFILE_REPLACE = /(avc[1234]|hvc1|hev1|dvh[1e]|vp09|av01)(?:\.[^.,]+)+/; class BufferController extends Logger { constructor(hls) { super('buffer-controller', hls.logger); // The level details used to determine duration, target-duration and live this.details = null; // cache the self generated object url to detect hijack of video tag this._objectUrl = null; // A queue of buffer operations which require the SourceBuffer to not be updating upon execution this.operationQueue = void 0; // References to event listeners for each SourceBuffer, so that they can be referenced for event removal this.listeners = void 0; this.hls = void 0; // The number of BUFFER_CODEC events received before any sourceBuffers are created this.bufferCodecEventsExpected = 0; // The total number of BUFFER_CODEC events received this._bufferCodecEventsTotal = 0; // A reference to the attached media element this.media = null; // A reference to the active media source this.mediaSource = null; // Last MP3 audio chunk appended this.lastMpegAudioChunk = null; this.appendSource = void 0; // counters this.appendErrors = { audio: 0, video: 0, audiovideo: 0 }; this.tracks = {}; this.pendingTracks = {}; this.sourceBuffer = void 0; this._onEndStreaming = event => { if (!this.hls) { return; } this.hls.pauseBuffering(); }; this._onStartStreaming = event => { if (!this.hls) { return; } this.hls.resumeBuffering(); }; // Keep as arrow functions so that we can directly reference these functions directly as event listeners this._onMediaSourceOpen = () => { const { media, mediaSource } = this; this.log('Media source opened'); if (media) { media.removeEventListener('emptied', this._onMediaEmptied); this.updateMediaElementDuration(); this.hls.trigger(Events.MEDIA_ATTACHED, { media, mediaSource: mediaSource }); } if (mediaSource) { // once received, don't listen anymore to sourceopen event mediaSource.removeEventListener('sourceopen', this._onMediaSourceOpen); } this.checkPendingTracks(); }; this._onMediaSourceClose = () => { this.log('Media source closed'); }; this._onMediaSourceEnded = () => { this.log('Media source ended'); }; this._onMediaEmptied = () => { const { mediaSrc, _objectUrl } = this; if (mediaSrc !== _objectUrl) { this.error(`Media element src was set while attaching MediaSource (${_objectUrl} > ${mediaSrc})`); } }; this.hls = hls; this.appendSource = hls.config.preferManagedMediaSource; this._initSourceBuffer(); this.registerListeners(); } hasSourceTypes() { return this.getSourceBufferTypes().length > 0 || Object.keys(this.pendingTracks).length > 0; } destroy() { this.unregisterListeners(); this.details = null; this.lastMpegAudioChunk = null; // @ts-ignore this.hls = null; // @ts-ignore this._onMediaSourceOpen = this._onMediaSourceClose = null; // @ts-ignore this._onMediaSourceEnded = null; // @ts-ignore this._onStartStreaming = this._onEndStreaming = null; } registerListeners() { const { hls } = this; hls.on(Events.MEDIA_ATTACHING, this.onMediaAttaching, this); hls.on(Events.MEDIA_DETACHING, this.onMediaDetaching, this); hls.on(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.on(Events.MANIFEST_PARSED, this.onManifestParsed, this); hls.on(Events.BUFFER_RESET, this.onBufferReset, this); hls.on(Events.BUFFER_APPENDING, this.onBufferAppending, this); hls.on(Events.BUFFER_CODECS, this.onBufferCodecs, this); hls.on(Events.BUFFER_EOS, this.onBufferEos, this); hls.on(Events.BUFFER_FLUSHING, this.onBufferFlushing, this); hls.on(Events.LEVEL_UPDATED, this.onLevelUpdated, this); hls.on(Events.FRAG_PARSED, this.onFragParsed, this); hls.on(Events.FRAG_CHANGED, this.onFragChanged, this); } unregisterListeners() { const { hls } = this; hls.off(Events.MEDIA_ATTACHING, this.onMediaAttaching, this); hls.off(Events.MEDIA_DETACHING, this.onMediaDetaching, this); hls.off(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.off(Events.MANIFEST_PARSED, this.onManifestParsed, this); hls.off(Events.BUFFER_RESET, this.onBufferReset, this); hls.off(Events.BUFFER_APPENDING, this.onBufferAppending, this); hls.off(Events.BUFFER_CODECS, this.onBufferCodecs, this); hls.off(Events.BUFFER_EOS, this.onBufferEos, this); hls.off(Events.BUFFER_FLUSHING, this.onBufferFlushing, this); hls.off(Events.LEVEL_UPDATED, this.onLevelUpdated, this); hls.off(Events.FRAG_PARSED, this.onFragParsed, this); hls.off(Events.FRAG_CHANGED, this.onFragChanged, this); } _initSourceBuffer() { this.sourceBuffer = {}; this.operationQueue = new BufferOperationQueue(this.sourceBuffer); this.listeners = { audio: [], video: [], audiovideo: [] }; this.appendErrors = { audio: 0, video: 0, audiovideo: 0 }; this.lastMpegAudioChunk = null; } onManifestLoading() { this.bufferCodecEventsExpected = this._bufferCodecEventsTotal = 0; this.details = null; } onManifestParsed(event, data) { // in case of alt audio 2 BUFFER_CODECS events will be triggered, one per stream controller // sourcebuffers will be created all at once when the expected nb of tracks will be reached // in case alt audio is not used, only one BUFFER_CODEC event will be fired from main stream controller // it will contain the expected nb of source buffers, no need to compute it let codecEvents = 2; if (data.audio && !data.video || !data.altAudio || !false) { codecEvents = 1; } this.bufferCodecEventsExpected = this._bufferCodecEventsTotal = codecEvents; this.log(`${this.bufferCodecEventsExpected} bufferCodec event(s) expected`); } onMediaAttaching(event, data) { const media = this.media = data.media; const MediaSource = getMediaSource(this.appendSource); if (media && MediaSource) { var _ms$constructor; const ms = this.mediaSource = new MediaSource(); this.log(`created media source: ${(_ms$constructor = ms.constructor) == null ? void 0 : _ms$constructor.name}`); // MediaSource listeners are arrow functions with a lexical scope, and do not need to be bound ms.addEventListener('sourceopen', this._onMediaSourceOpen); ms.addEventListener('sourceended', this._onMediaSourceEnded); ms.addEventListener('sourceclose', this._onMediaSourceClose); ms.addEventListener('startstreaming', this._onStartStreaming); ms.addEventListener('endstreaming', this._onEndStreaming); // cache the locally generated object url const objectUrl = this._objectUrl = self.URL.createObjectURL(ms); // link video and media Source if (this.appendSource) { try { media.removeAttribute('src'); // ManagedMediaSource will not open without disableRemotePlayback set to false or source alternatives const MMS = self.ManagedMediaSource; media.disableRemotePlayback = media.disableRemotePlayback || MMS && ms instanceof MMS; removeSourceChildren(media); addSource(media, objectUrl); media.load(); } catch (error) { media.src = objectUrl; } } else { media.src = objectUrl; } media.addEventListener('emptied', this._onMediaEmptied); } } onMediaDetaching() { const { media, mediaSource, _objectUrl } = this; if (mediaSource) { this.log('media source detaching'); if (mediaSource.readyState === 'open') { try { // endOfStream could trigger exception if any sourcebuffer is in updating state // we don't really care about checking sourcebuffer state here, // as we are anyway detaching the MediaSource // let's just avoid this exception to propagate mediaSource.endOfStream(); } catch (err) { this.warn(`onMediaDetaching: ${err.message} while calling endOfStream`); } } // Clean up the SourceBuffers by invoking onBufferReset this.onBufferReset(); mediaSource.removeEventListener('sourceopen', this._onMediaSourceOpen); mediaSource.removeEventListener('sourceended', this._onMediaSourceEnded); mediaSource.removeEventListener('sourceclose', this._onMediaSourceClose); mediaSource.removeEventListener('startstreaming', this._onStartStreaming); mediaSource.removeEventListener('endstreaming', this._onEndStreaming); // Detach properly the MediaSource from the HTMLMediaElement as // suggested in https://github.com/w3c/media-source/issues/53. if (media) { media.removeEventListener('emptied', this._onMediaEmptied); if (_objectUrl) { self.URL.revokeObjectURL(_objectUrl); } // clean up video tag src only if it's our own url. some external libraries might // hijack the video tag and change its 'src' without destroying the Hls instance first if (this.mediaSrc === _objectUrl) { media.removeAttribute('src'); if (this.appendSource) { removeSourceChildren(media); } media.load(); } else { this.warn('media|source.src was changed by a third party - skip cleanup'); } } this.mediaSource = null; this.media = null; this._objectUrl = null; this.bufferCodecEventsExpected = this._bufferCodecEventsTotal; this.pendingTracks = {}; this.tracks = {}; } this.hls.trigger(Events.MEDIA_DETACHED, undefined); } onBufferReset() { this.getSourceBufferTypes().forEach(type => { this.resetBuffer(type); }); this._initSourceBuffer(); } resetBuffer(type) { const sb = this.sourceBuffer[type]; try { if (sb) { var _this$mediaSource; this.removeBufferListeners(type); // Synchronously remove the SB from the map before the next call in order to prevent an async function from // accessing it this.sourceBuffer[type] = undefined; if ((_this$mediaSource = this.mediaSource) != null && _this$mediaSource.sourceBuffers.length) { this.mediaSource.removeSourceBuffer(sb); } } } catch (err) { this.warn(`onBufferReset ${type}`, err); } } onBufferCodecs(event, data) { const sourceBufferCount = this.getSourceBufferTypes().length; const trackNames = Object.keys(data); trackNames.forEach(trackName => { if (sourceBufferCount) { // check if SourceBuffer codec needs to change const track = this.tracks[trackName]; if (track && typeof track.buffer.changeType === 'function') { var _trackCodec; const { id, codec, levelCodec, container, metadata } = data[trackName]; const currentCodecFull = pickMostCompleteCodecName(track.codec, track.levelCodec); const currentCodec = currentCodecFull == null ? void 0 : currentCodecFull.replace(VIDEO_CODEC_PROFILE_REPLACE, '$1'); let trackCodec = pickMostCompleteCodecName(codec, levelCodec); const nextCodec = (_trackCodec = trackCodec) == null ? void 0 : _trackCodec.replace(VIDEO_CODEC_PROFILE_REPLACE, '$1'); if (trackCodec && currentCodec !== nextCodec) { if (trackName.slice(0, 5) === 'audio') { trackCodec = getCodecCompatibleName(trackCodec, this.hls.config.preferManagedMediaSource); } const mimeType = `${container};codecs=${trackCodec}`; this.appendChangeType(trackName, mimeType); this.log(`switching codec ${currentCodecFull} to ${trackCodec}`); this.tracks[trackName] = { buffer: track.buffer, codec, container, levelCodec, metadata, id }; } } } else { // if source buffer(s) not created yet, appended buffer tracks in this.pendingTracks this.pendingTracks[trackName] = data[trackName]; } }); // if sourcebuffers already created, do nothing ... if (sourceBufferCount) { return; } const bufferCodecEventsExpected = Math.max(this.bufferCodecEventsExpected - 1, 0); if (this.bufferCodecEventsExpected !== bufferCodecEventsExpected) { this.log(`${bufferCodecEventsExpected} bufferCodec event(s) expected ${trackNames.join(',')}`); this.bufferCodecEventsExpected = bufferCodecEventsExpected; } if (this.mediaSource && this.mediaSource.readyState === 'open') { this.checkPendingTracks(); } } appendChangeType(type, mimeType) { const { operationQueue } = this; const operation = { execute: () => { const sb = this.sourceBuffer[type]; if (sb) { this.log(`changing ${type} sourceBuffer type to ${mimeType}`); sb.changeType(mimeType); } operationQueue.shiftAndExecuteNext(type); }, onStart: () => {}, onComplete: () => {}, onError: error => { this.warn(`Failed to change ${type} SourceBuffer type`, error); } }; operationQueue.append(operation, type, !!this.pendingTracks[type]); } onBufferAppending(event, eventData) { const { hls, operationQueue, tracks } = this; const { data, type, frag, part, chunkMeta } = eventData; const chunkStats = chunkMeta.buffering[type]; const bufferAppendingStart = self.performance.now(); chunkStats.start = bufferAppendingStart; const fragBuffering = frag.stats.buffering; const partBuffering = part ? part.stats.buffering : null; if (fragBuffering.start === 0) { fragBuffering.start = bufferAppendingStart; } if (partBuffering && partBuffering.start === 0) { partBuffering.start = bufferAppendingStart; } // TODO: Only update timestampOffset when audio/mpeg fragment or part is not contiguous with previously appended // Adjusting `SourceBuffer.timestampOffset` (desired point in the timeline where the next frames should be appended) // in Chrome browser when we detect MPEG audio container and time delta between level PTS and `SourceBuffer.timestampOffset` // is greater than 100ms (this is enough to handle seek for VOD or level change for LIVE videos). // More info here: https://github.com/video-dev/hls.js/issues/332#issuecomment-257986486 const audioTrack = tracks.audio; let checkTimestampOffset = false; if (type === 'audio' && (audioTrack == null ? void 0 : audioTrack.container) === 'audio/mpeg') { checkTimestampOffset = !this.lastMpegAudioChunk || chunkMeta.id === 1 || this.lastMpegAudioChunk.sn !== chunkMeta.sn; this.lastMpegAudioChunk = chunkMeta; } const fragStart = frag.start; const operation = { execute: () => { chunkStats.executeStart = self.performance.now(); if (checkTimestampOffset) { const sb = this.sourceBuffer[type]; if (sb) { const delta = fragStart - sb.timestampOffset; if (Math.abs(delta) >= 0.1) { this.log(`Updating audio SourceBuffer timestampOffset to ${fragStart} (delta: ${delta}) sn: ${frag.sn})`); sb.timestampOffset = fragStart; } } } this.appendExecutor(data, type); }, onStart: () => { // logger.debug(`[buffer-controller]: ${type} SourceBuffer updatestart`); }, onComplete: () => { // logger.debug(`[buffer-controller]: ${type} SourceBuffer updateend`); const end = self.performance.now(); chunkStats.executeEnd = chunkStats.end = end; if (fragBuffering.first === 0) { fragBuffering.first = end; } if (partBuffering && partBuffering.first === 0) { partBuffering.first = end; } const { sourceBuffer } = this; const timeRanges = {}; for (const type in sourceBuffer) { timeRanges[type] = BufferHelper.getBuffered(sourceBuffer[type]); } this.appendErrors[type] = 0; if (type === 'audio' || type === 'video') { this.appendErrors.audiovideo = 0; } else { this.appendErrors.audio = 0; this.appendErrors.video = 0; } this.hls.trigger(Events.BUFFER_APPENDED, { type, frag, part, chunkMeta, parent: frag.type, timeRanges }); }, onError: error => { // in case any error occured while appending, put back segment in segments table const event = { type: ErrorTypes.MEDIA_ERROR, parent: frag.type, details: ErrorDetails.BUFFER_APPEND_ERROR, sourceBufferName: type, frag, part, chunkMeta, error, err: error, fatal: false }; if (error.code === DOMException.QUOTA_EXCEEDED_ERR) { // QuotaExceededError: http://www.w3.org/TR/html5/infrastructure.html#quotaexceedederror // let's stop appending any segments, and report BUFFER_FULL_ERROR error event.details = ErrorDetails.BUFFER_FULL_ERROR; } else { const appendErrorCount = ++this.appendErrors[type]; event.details = ErrorDetails.BUFFER_APPEND_ERROR; /* with UHD content, we could get loop of quota exceeded error until browser is able to evict some data from sourcebuffer. Retrying can help recover. */ this.warn(`Failed ${appendErrorCount}/${hls.config.appendErrorMaxRetry} times to append segment in "${type}" sourceBuffer`); if (appendErrorCount >= hls.config.appendErrorMaxRetry) { event.fatal = true; } } hls.trigger(Events.ERROR, event); } }; operationQueue.append(operation, type, !!this.pendingTracks[type]); } onBufferFlushing(event, data) { const { operationQueue } = this; const flushOperation = type => ({ execute: this.removeExecutor.bind(this, type, data.startOffset, data.endOffset), onStart: () => { // logger.debug(`[buffer-controller]: Started flushing ${data.startOffset} -> ${data.endOffset} for ${type} Source Buffer`); }, onComplete: () => { // logger.debug(`[buffer-controller]: Finished flushing ${data.startOffset} -> ${data.endOffset} for ${type} Source Buffer`); this.hls.trigger(Events.BUFFER_FLUSHED, { type }); }, onError: error => { this.warn(`Failed to remove from ${type} SourceBuffer`, error); } }); if (data.type) { operationQueue.append(flushOperation(data.type), data.type); } else { this.getSourceBufferTypes().forEach(type => { operationQueue.append(flushOperation(type), type); }); } } onFragParsed(event, data) { const { frag, part } = data; const buffersAppendedTo = []; const elementaryStreams = part ? part.elementaryStreams : frag.elementaryStreams; if (elementaryStreams[ElementaryStreamTypes.AUDIOVIDEO]) { buffersAppendedTo.push('audiovideo'); } else { if (elementaryStreams[ElementaryStreamTypes.AUDIO]) { buffersAppendedTo.push('audio'); } if (elementaryStreams[ElementaryStreamTypes.VIDEO]) { buffersAppendedTo.push('video'); } } const onUnblocked = () => { const now = self.performance.now(); frag.stats.buffering.end = now; if (part) { part.stats.buffering.end = now; } const stats = part ? part.stats : frag.stats; this.hls.trigger(Events.FRAG_BUFFERED, { frag, part, stats, id: frag.type }); }; if (buffersAppendedTo.length === 0) { this.warn(`Fragments must have at least one ElementaryStreamType set. type: ${frag.type} level: ${frag.level} sn: ${frag.sn}`); } this.blockBuffers(onUnblocked, buffersAppendedTo); } onFragChanged(event, data) { this.trimBuffers(); } // on BUFFER_EOS mark matching sourcebuffer(s) as ended and trigger checkEos() // an undefined data.type will mark all buffers as EOS. onBufferEos(event, data) { const ended = this.getSourceBufferTypes().reduce((acc, type) => { const sb = this.sourceBuffer[type]; if (sb && (!data.type || data.type === type)) { sb.ending = true; if (!sb.ended) { sb.ended = true; this.log(`${type} sourceBuffer now EOS`); } } return acc && !!(!sb || sb.ended); }, true); if (ended) { this.log(`Queueing mediaSource.endOfStream()`); this.blockBuffers(() => { this.getSourceBufferTypes().forEach(type => { const sb = this.sourceBuffer[type]; if (sb) { sb.ending = false; } }); const { mediaSource } = this; if (!mediaSource || mediaSource.readyState !== 'open') { if (mediaSource) { this.log(`Could not call mediaSource.endOfStream(). mediaSource.readyState: ${mediaSource.readyState}`); } return; } this.log(`Calling mediaSource.endOfStream()`); // Allow this to throw and be caught by the enqueueing function mediaSource.endOfStream(); }); } } onLevelUpdated(event, { details }) { if (!details.fragments.length) { return; } this.details = details; if (this.getSourceBufferTypes().length) { this.blockBuffers(this.updateMediaElementDuration.bind(this)); } else { this.updateMediaElementDuration(); } } trimBuffers() { const { hls, details, media } = this; if (!media || details === null) { return; } const sourceBufferTypes = this.getSourceBufferTypes(); if (!sourceBufferTypes.length) { return; } const config = hls.config; const currentTime = media.currentTime; const targetDuration = details.levelTargetDuration; // Support for deprecated liveBackBufferLength const backBufferLength = details.live && config.liveBackBufferLength !== null ? config.liveBackBufferLength : config.backBufferLength; if (isFiniteNumber(backBufferLength) && backBufferLength > 0) { const maxBackBufferLength = Math.max(backBufferLength, targetDuration); const targetBackBufferPosition = Math.floor(currentTime / targetDuration) * targetDuration - maxBackBufferLength; this.flushBackBuffer(currentTime, targetDuration, targetBackBufferPosition); } if (isFiniteNumber(config.frontBufferFlushThreshold) && config.frontBufferFlushThreshold > 0) { const frontBufferLength = Math.max(config.maxBufferLength, config.frontBufferFlushThreshold); const maxFrontBufferLength = Math.max(frontBufferLength, targetDuration); const targetFrontBufferPosition = Math.floor(currentTime / targetDuration) * targetDuration + maxFrontBufferLength; this.flushFrontBuffer(currentTime, targetDuration, targetFrontBufferPosition); } } flushBackBuffer(currentTime, targetDuration, targetBackBufferPosition) { const { details, sourceBuffer } = this; const sourceBufferTypes = this.getSourceBufferTypes(); sourceBufferTypes.forEach(type => { const sb = sourceBuffer[type]; if (sb) { const buffered = BufferHelper.getBuffered(sb); // when target buffer start exceeds actual buffer start if (buffered.length > 0 && targetBackBufferPosition > buffered.start(0)) { this.hls.trigger(Events.BACK_BUFFER_REACHED, { bufferEnd: targetBackBufferPosition }); // Support for deprecated event: if (details != null && details.live) { this.hls.trigger(Events.LIVE_BACK_BUFFER_REACHED, { bufferEnd: targetBackBufferPosition }); } else if (sb.ended && buffered.end(buffered.length - 1) - currentTime < targetDuration * 2) { this.log(`Cannot flush ${type} back buffer while SourceBuffer is in ended state`); return; } this.hls.trigger(Events.BUFFER_FLUSHING, { startOffset: 0, endOffset: targetBackBufferPosition, type }); } } }); } flushFrontBuffer(currentTime, targetDuration, targetFrontBufferPosition) { const { sourceBuffer } = this; const sourceBufferTypes = this.getSourceBufferTypes(); sourceBufferTypes.forEach(type => { const sb = sourceBuffer[type]; if (sb) { const buffered = BufferHelper.getBuffered(sb); const numBufferedRanges = buffered.length; // The buffer is either empty or contiguous if (numBufferedRanges < 2) { return; } const bufferStart = buffered.start(numBufferedRanges - 1); const bufferEnd = buffered.end(numBufferedRanges - 1); // No flush if we can tolerate the current buffer length or the current buffer range we would flush is contiguous with current position if (targetFrontBufferPosition > bufferStart || currentTime >= bufferStart && currentTime <= bufferEnd) { return; } else if (sb.ended && currentTime - bufferEnd < 2 * targetDuration) { this.log(`Cannot flush ${type} front buffer while SourceBuffer is in ended state`); return; } this.hls.trigger(Events.BUFFER_FLUSHING, { startOffset: bufferStart, endOffset: Infinity, type }); } }); } /** * Update Media Source duration to current level duration or override to Infinity if configuration parameter * 'liveDurationInfinity` is set to `true` * More details: https://github.com/video-dev/hls.js/issues/355 */ updateMediaElementDuration() { if (!this.details || !this.media || !this.mediaSource || this.mediaSource.readyState !== 'open') { return; } const { details, hls, media, mediaSource } = this; const levelDuration = details.fragments[0].start + details.totalduration; const mediaDuration = media.duration; const msDuration = isFiniteNumber(mediaSource.duration) ? mediaSource.duration : 0; if (details.live && hls.config.liveDurationInfinity) { // Override duration to Infinity mediaSource.duration = Infinity; this.updateSeekableRange(details); } else if (levelDuration > msDuration && levelDuration > mediaDuration || !isFiniteNumber(mediaDuration)) { // levelDuration was the last value we set. // not using mediaSource.duration as the browser may tweak this value // only update Media Source duration if its value increase, this is to avoid // flushing already buffered portion when switching between quality level this.log(`Updating Media Source duration to ${levelDuration.toFixed(3)}`); mediaSource.duration = levelDuration; } } updateSeekableRange(levelDetails) { const mediaSource = this.mediaSource; const fragments = levelDetails.fragments; const len = fragments.length; if (len && levelDetails.live && mediaSource != null && mediaSource.setLiveSeekableRange) { const start = Math.max(0, fragments[0].start); const end = Math.max(start, start + levelDetails.totalduration); this.log(`Media Source duration is set to ${mediaSource.duration}. Setting seekable range to ${start}-${end}.`); mediaSource.setLiveSeekableRange(start, end); } } checkPendingTracks() { const { bufferCodecEventsExpected, operationQueue, pendingTracks } = this; // Check if we've received all of the expected bufferCodec events. When none remain, create all the sourceBuffers at once. // This is important because the MSE spec allows implementations to throw QuotaExceededErrors if creating new sourceBuffers after // data has been appended to existing ones. // 2 tracks is the max (one for audio, one for video). If we've reach this max go ahead and create the buffers. const pendingTracksCount = Object.keys(pendingTracks).length; if (pendingTracksCount && (!bufferCodecEventsExpected || pendingTracksCount === 2 || 'audiovideo' in pendingTracks)) { // ok, let's create them now ! this.createSourceBuffers(pendingTracks); this.pendingTracks = {}; // append any pending segments now ! const buffers = this.getSourceBufferTypes(); if (buffers.length) { this.hls.trigger(Events.BUFFER_CREATED, { tracks: this.tracks }); buffers.forEach(type => { operationQueue.executeNext(type); }); } else { const error = new Error('could not create source buffer for media codec(s)'); this.hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.BUFFER_INCOMPATIBLE_CODECS_ERROR, fatal: true, error, reason: error.message }); } } } createSourceBuffers(tracks) { const { sourceBuffer, mediaSource } = this; if (!mediaSource) { throw Error('createSourceBuffers called when mediaSource was null'); } for (const trackName in tracks) { if (!sourceBuffer[trackName]) { const track = tracks[trackName]; if (!track) { throw Error(`source buffer exists for track ${trackName}, however track does not`); } // use levelCodec as first priority let codec = track.levelCodec || track.codec; if (codec) { if (trackName.slice(0, 5) === 'audio') { codec = getCodecCompatibleName(codec, this.hls.config.preferManagedMediaSource); } } const mimeType = `${track.container};codecs=${codec}`; this.log(`creating sourceBuffer(${mimeType})`); try { const sb = sourceBuffer[trackName] = mediaSource.addSourceBuffer(mimeType); const sbName = trackName; this.addBufferListener(sbName, 'updatestart', this._onSBUpdateStart); this.addBufferListener(sbName, 'updateend', this._onSBUpdateEnd); this.addBufferListener(sbName, 'error', this._onSBUpdateError); // ManagedSourceBuffer bufferedchange event this.addBufferListener(sbName, 'bufferedchange', (type, event) => { // If media was ejected check for a change. Added ranges are redundant with changes on 'updateend' event. const removedRanges = event.removedRanges; if (removedRanges != null && removedRanges.length) { this.hls.trigger(Events.BUFFER_FLUSHED, { type: trackName }); } }); this.tracks[trackName] = { buffer: sb, codec: codec, container: track.container, levelCodec: track.levelCodec, metadata: track.metadata, id: track.id }; } catch (err) { this.error(`error while trying to add sourceBuffer: ${err.message}`); this.hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.BUFFER_ADD_CODEC_ERROR, fatal: false, error: err, sourceBufferName: trackName, mimeType: mimeType }); } } } } get mediaSrc() { var _this$media; const media = ((_this$media = this.media) == null ? void 0 : _this$media.firstChild) || this.media; return media == null ? void 0 : media.src; } _onSBUpdateStart(type) { const { operationQueue } = this; const operation = operationQueue.current(type); operation.onStart(); } _onSBUpdateEnd(type) { var _this$mediaSource2; if (((_this$mediaSource2 = this.mediaSource) == null ? void 0 : _this$mediaSource2.readyState) === 'closed') { this.resetBuffer(type); return; } const { operationQueue } = this; const operation = operationQueue.current(type); operation.onComplete(); operationQueue.shiftAndExecuteNext(type); } _onSBUpdateError(type, event) { var _this$mediaSource3; const error = new Error(`${type} SourceBuffer error. MediaSource readyState: ${(_this$mediaSource3 = this.mediaSource) == null ? void 0 : _this$mediaSource3.readyState}`); this.error(`${error}`, event); // according to http://www.w3.org/TR/media-source/#sourcebuffer-append-error // SourceBuffer errors are not necessarily fatal; if so, the HTMLMediaElement will fire an error event this.hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.BUFFER_APPENDING_ERROR, sourceBufferName: type, error, fatal: false }); // updateend is always fired after error, so we'll allow that to shift the current operation off of the queue const operation = this.operationQueue.current(type); if (operation) { operation.onError(error); } } // This method must result in an updateend event; if remove is not called, _onSBUpdateEnd must be called manually removeExecutor(type, startOffset, endOffset) { const { media, mediaSource, operationQueue, sourceBuffer } = this; const sb = sourceBuffer[type]; if (!media || !mediaSource || !sb) { this.warn(`Attempting to remove from the ${type} SourceBuffer, but it does not exist`); operationQueue.shiftAndExecuteNext(type); return; } const mediaDuration = isFiniteNumber(media.duration) ? media.duration : Infinity; const msDuration = isFiniteNumber(mediaSource.duration) ? mediaSource.duration : Infinity; const removeStart = Math.max(0, startOffset); const removeEnd = Math.min(endOffset, mediaDuration, msDuration); if (removeEnd > removeStart && (!sb.ending || sb.ended)) { sb.ended = false; this.log(`Removing [${removeStart},${removeEnd}] from the ${type} SourceBuffer`); sb.remove(removeStart, removeEnd); } else { // Cycle the queue operationQueue.shiftAndExecuteNext(type); } } // This method must result in an updateend event; if append is not called, _onSBUpdateEnd must be called manually appendExecutor(data, type) { const sb = this.sourceBuffer[type]; if (!sb) { if (!this.pendingTracks[type]) { throw new Error(`Attempting to append to the ${type} SourceBuffer, but it does not exist`); } return; } sb.ended = false; sb.appendBuffer(data); } // Enqueues an operation to each SourceBuffer queue which, upon execution, resolves a promise. When all promises // resolve, the onUnblocked function is executed. Functions calling this method do not need to unblock the queue // upon completion, since we already do it here blockBuffers(onUnblocked, buffers = this.getSourceBufferTypes()) { if (!buffers.length) { this.log('Blocking operation requested, but no SourceBuffers exist'); Promise.resolve().then(onUnblocked); return; } const { operationQueue } = this; // logger.debug(`[buffer-controller]: Blocking ${buffers} SourceBuffer`); const blockingOperations = buffers.map(type => operationQueue.appendBlocker(type)); Promise.all(blockingOperations).then(() => { // logger.debug(`[buffer-controller]: Blocking operation resolved; unblocking ${buffers} SourceBuffer`); onUnblocked(); buffers.forEach(type => { const sb = this.sourceBuffer[type]; // Only cycle the queue if the SB is not updating. There's a bug in Chrome which sets the SB updating flag to // true when changing the MediaSource duration (https://bugs.chromium.org/p/chromium/issues/detail?id=959359&can=2&q=mediasource%20duration) // While this is a workaround, it's probably useful to have around if (!(sb != null && sb.updating)) { operationQueue.shiftAndExecuteNext(type); } }); }); } getSourceBufferTypes() { return Object.keys(this.sourceBuffer); } addBufferListener(type, event, fn) { const buffer = this.sourceBuffer[type]; if (!buffer) { return; } const listener = fn.bind(this, type); this.listeners[type].push({ event, listener }); buffer.addEventListener(event, listener); } removeBufferListeners(type) { const buffer = this.sourceBuffer[type]; if (!buffer) { return; } this.listeners[type].forEach(l => { buffer.removeEventListener(l.event, l.listener); }); } } function removeSourceChildren(node) { const sourceChildren = node.querySelectorAll('source'); [].slice.call(sourceChildren).forEach(source => { node.removeChild(source); }); } function addSource(media, url) { const source = self.document.createElement('source'); source.type = 'video/mp4'; source.src = url; media.appendChild(source); } class CapLevelController { constructor(hls) { this.hls = void 0; this.autoLevelCapping = void 0; this.firstLevel = void 0; this.media = void 0; this.restrictedLevels = void 0; this.timer = void 0; this.clientRect = void 0; this.streamController = void 0; this.hls = hls; this.autoLevelCapping = Number.POSITIVE_INFINITY; this.firstLevel = -1; this.media = null; this.restrictedLevels = []; this.timer = undefined; this.clientRect = null; this.registerListeners(); } setStreamController(streamController) { this.streamController = streamController; } destroy() { if (this.hls) { this.unregisterListener(); } if (this.timer) { this.stopCapping(); } this.media = null; this.clientRect = null; // @ts-ignore this.hls = this.streamController = null; } registerListeners() { const { hls } = this; hls.on(Events.FPS_DROP_LEVEL_CAPPING, this.onFpsDropLevelCapping, this); hls.on(Events.MEDIA_ATTACHING, this.onMediaAttaching, this); hls.on(Events.MANIFEST_PARSED, this.onManifestParsed, this); hls.on(Events.LEVELS_UPDATED, this.onLevelsUpdated, this); hls.on(Events.BUFFER_CODECS, this.onBufferCodecs, this); hls.on(Events.MEDIA_DETACHING, this.onMediaDetaching, this); } unregisterListener() { const { hls } = this; hls.off(Events.FPS_DROP_LEVEL_CAPPING, this.onFpsDropLevelCapping, this); hls.off(Events.MEDIA_ATTACHING, this.onMediaAttaching, this); hls.off(Events.MANIFEST_PARSED, this.onManifestParsed, this); hls.off(Events.LEVELS_UPDATED, this.onLevelsUpdated, this); hls.off(Events.BUFFER_CODECS, this.onBufferCodecs, this); hls.off(Events.MEDIA_DETACHING, this.onMediaDetaching, this); } onFpsDropLevelCapping(event, data) { // Don't add a restricted level more than once const level = this.hls.levels[data.droppedLevel]; if (this.isLevelAllowed(level)) { this.restrictedLevels.push({ bitrate: level.bitrate, height: level.height, width: level.width }); } } onMediaAttaching(event, data) { this.media = data.media instanceof HTMLVideoElement ? data.media : null; this.clientRect = null; if (this.timer && this.hls.levels.length) { this.detectPlayerSize(); } } onManifestParsed(event, data) { const hls = this.hls; this.restrictedLevels = []; this.firstLevel = data.firstLevel; if (hls.config.capLevelToPlayerSize && data.video) { // Start capping immediately if the manifest has signaled video codecs this.startCapping(); } } onLevelsUpdated(event, data) { if (this.timer && isFiniteNumber(this.autoLevelCapping)) { this.detectPlayerSize(); } } // Only activate capping when playing a video stream; otherwise, multi-bitrate audio-only streams will be restricted // to the first level onBufferCodecs(event, data) { const hls = this.hls; if (hls.config.capLevelToPlayerSize && data.video) { // If the manifest did not signal a video codec capping has been deferred until we're certain video is present this.startCapping(); } } onMediaDetaching() { this.stopCapping(); } detectPlayerSize() { if (this.media) { if (this.mediaHeight <= 0 || this.mediaWidth <= 0) { this.clientRect = null; return; } const levels = this.hls.levels; if (levels.length) { const hls = this.hls; const maxLevel = this.getMaxLevel(levels.length - 1); if (maxLevel !== this.autoLevelCapping) { hls.logger.log(`Setting autoLevelCapping to ${maxLevel}: ${levels[maxLevel].height}p@${levels[maxLevel].bitrate} for media ${this.mediaWidth}x${this.mediaHeight}`); } hls.autoLevelCapping = maxLevel; if (hls.autoLevelCapping > this.autoLevelCapping && this.streamController) { // if auto level capping has a higher value for the previous one, flush the buffer using nextLevelSwitch // usually happen when the user go to the fullscreen mode. this.streamController.nextLevelSwitch(); } this.autoLevelCapping = hls.autoLevelCapping; } } } /* * returns level should be the one with the dimensions equal or greater than the media (player) dimensions (so the video will be downscaled) */ getMaxLevel(capLevelIndex) { const levels = this.hls.levels; if (!levels.length) { return -1; } const validLevels = levels.filter((level, index) => this.isLevelAllowed(level) && index <= capLevelIndex); this.clientRect = null; return CapLevelController.getMaxLevelByMediaSize(validLevels, this.mediaWidth, this.mediaHeight); } startCapping() { if (this.timer) { // Don't reset capping if started twice; this can happen if the manifest signals a video codec return; } this.autoLevelCapping = Number.POSITIVE_INFINITY; self.clearInterval(this.timer); this.timer = self.setInterval(this.detectPlayerSize.bind(this), 1000); this.detectPlayerSize(); } stopCapping() { this.restrictedLevels = []; this.firstLevel = -1; this.autoLevelCapping = Number.POSITIVE_INFINITY; if (this.timer) { self.clearInterval(this.timer); this.timer = undefined; } } getDimensions() { if (this.clientRect) { return this.clientRect; } const media = this.media; const boundsRect = { width: 0, height: 0 }; if (media) { const clientRect = media.getBoundingClientRect(); boundsRect.width = clientRect.width; boundsRect.height = clientRect.height; if (!boundsRect.width && !boundsRect.height) { // When the media element has no width or height (equivalent to not being in the DOM), // then use its width and height attributes (media.width, media.height) boundsRect.width = clientRect.right - clientRect.left || media.width || 0; boundsRect.height = clientRect.bottom - clientRect.top || media.height || 0; } } this.clientRect = boundsRect; return boundsRect; } get mediaWidth() { return this.getDimensions().width * this.contentScaleFactor; } get mediaHeight() { return this.getDimensions().height * this.contentScaleFactor; } get contentScaleFactor() { let pixelRatio = 1; if (!this.hls.config.ignoreDevicePixelRatio) { try { pixelRatio = self.devicePixelRatio; } catch (e) { /* no-op */ } } return pixelRatio; } isLevelAllowed(level) { const restrictedLevels = this.restrictedLevels; return !restrictedLevels.some(restrictedLevel => { return level.bitrate === restrictedLevel.bitrate && level.width === restrictedLevel.width && level.height === restrictedLevel.height; }); } static getMaxLevelByMediaSize(levels, width, height) { if (!(levels != null && levels.length)) { return -1; } // Levels can have the same dimensions but differing bandwidths - since levels are ordered, we can look to the next // to determine whether we've chosen the greatest bandwidth for the media's dimensions const atGreatestBandwidth = (curLevel, nextLevel) => { if (!nextLevel) { return true; } return curLevel.width !== nextLevel.width || curLevel.height !== nextLevel.height; }; // If we run through the loop without breaking, the media's dimensions are greater than every level, so default to // the max level let maxLevelIndex = levels.length - 1; // Prevent changes in aspect-ratio from causing capping to toggle back and forth const squareSize = Math.max(width, height); for (let i = 0; i < levels.length; i += 1) { const level = levels[i]; if ((level.width >= squareSize || level.height >= squareSize) && atGreatestBandwidth(level, levels[i + 1])) { maxLevelIndex = i; break; } } return maxLevelIndex; } } class FPSController { constructor(hls) { this.hls = void 0; this.isVideoPlaybackQualityAvailable = false; this.timer = void 0; this.media = null; this.lastTime = void 0; this.lastDroppedFrames = 0; this.lastDecodedFrames = 0; // stream controller must be provided as a dependency! this.streamController = void 0; this.hls = hls; this.registerListeners(); } setStreamController(streamController) { this.streamController = streamController; } registerListeners() { this.hls.on(Events.MEDIA_ATTACHING, this.onMediaAttaching, this); } unregisterListeners() { this.hls.off(Events.MEDIA_ATTACHING, this.onMediaAttaching, this); } destroy() { if (this.timer) { clearInterval(this.timer); } this.unregisterListeners(); this.isVideoPlaybackQualityAvailable = false; this.media = null; } onMediaAttaching(event, data) { const config = this.hls.config; if (config.capLevelOnFPSDrop) { const media = data.media instanceof self.HTMLVideoElement ? data.media : null; this.media = media; if (media && typeof media.getVideoPlaybackQuality === 'function') { this.isVideoPlaybackQualityAvailable = true; } self.clearInterval(this.timer); this.timer = self.setInterval(this.checkFPSInterval.bind(this), config.fpsDroppedMonitoringPeriod); } } checkFPS(video, decodedFrames, droppedFrames) { const currentTime = performance.now(); if (decodedFrames) { if (this.lastTime) { const currentPeriod = currentTime - this.lastTime; const currentDropped = droppedFrames - this.lastDroppedFrames; const currentDecoded = decodedFrames - this.lastDecodedFrames; const droppedFPS = 1000 * currentDropped / currentPeriod; const hls = this.hls; hls.trigger(Events.FPS_DROP, { currentDropped: currentDropped, currentDecoded: currentDecoded, totalDroppedFrames: droppedFrames }); if (droppedFPS > 0) { // hls.logger.log('checkFPS : droppedFPS/decodedFPS:' + droppedFPS/(1000 * currentDecoded / currentPeriod)); if (currentDropped > hls.config.fpsDroppedMonitoringThreshold * currentDecoded) { let currentLevel = hls.currentLevel; hls.logger.warn('drop FPS ratio greater than max allowed value for currentLevel: ' + currentLevel); if (currentLevel > 0 && (hls.autoLevelCapping === -1 || hls.autoLevelCapping >= currentLevel)) { currentLevel = currentLevel - 1; hls.trigger(Events.FPS_DROP_LEVEL_CAPPING, { level: currentLevel, droppedLevel: hls.currentLevel }); hls.autoLevelCapping = currentLevel; this.streamController.nextLevelSwitch(); } } } } this.lastTime = currentTime; this.lastDroppedFrames = droppedFrames; this.lastDecodedFrames = decodedFrames; } } checkFPSInterval() { const video = this.media; if (video) { if (this.isVideoPlaybackQualityAvailable) { const videoPlaybackQuality = video.getVideoPlaybackQuality(); this.checkFPS(video, videoPlaybackQuality.totalVideoFrames, videoPlaybackQuality.droppedVideoFrames); } else { // HTMLVideoElement doesn't include the webkit types this.checkFPS(video, video.webkitDecodedFrameCount, video.webkitDroppedFrameCount); } } } } const PATHWAY_PENALTY_DURATION_MS = 300000; class ContentSteeringController extends Logger { constructor(hls) { super('content-steering', hls.logger); this.hls = void 0; this.loader = null; this.uri = null; this.pathwayId = '.'; this.pathwayPriority = null; this.timeToLoad = 300; this.reloadTimer = -1; this.updated = 0; this.started = false; this.enabled = true; this.levels = null; this.audioTracks = null; this.subtitleTracks = null; this.penalizedPathways = {}; this.hls = hls; this.registerListeners(); } registerListeners() { const hls = this.hls; hls.on(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.on(Events.MANIFEST_LOADED, this.onManifestLoaded, this); hls.on(Events.MANIFEST_PARSED, this.onManifestParsed, this); hls.on(Events.ERROR, this.onError, this); } unregisterListeners() { const hls = this.hls; if (!hls) { return; } hls.off(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.off(Events.MANIFEST_LOADED, this.onManifestLoaded, this); hls.off(Events.MANIFEST_PARSED, this.onManifestParsed, this); hls.off(Events.ERROR, this.onError, this); } startLoad() { this.started = true; this.clearTimeout(); if (this.enabled && this.uri) { if (this.updated) { const ttl = this.timeToLoad * 1000 - (performance.now() - this.updated); if (ttl > 0) { this.scheduleRefresh(this.uri, ttl); return; } } this.loadSteeringManifest(this.uri); } } stopLoad() { this.started = false; if (this.loader) { this.loader.destroy(); this.loader = null; } this.clearTimeout(); } clearTimeout() { if (this.reloadTimer !== -1) { self.clearTimeout(this.reloadTimer); this.reloadTimer = -1; } } destroy() { this.unregisterListeners(); this.stopLoad(); // @ts-ignore this.hls = null; this.levels = this.audioTracks = this.subtitleTracks = null; } removeLevel(levelToRemove) { const levels = this.levels; if (levels) { this.levels = levels.filter(level => level !== levelToRemove); } } onManifestLoading() { this.stopLoad(); this.enabled = true; this.timeToLoad = 300; this.updated = 0; this.uri = null; this.pathwayId = '.'; this.levels = this.audioTracks = this.subtitleTracks = null; } onManifestLoaded(event, data) { const { contentSteering } = data; if (contentSteering === null) { return; } this.pathwayId = contentSteering.pathwayId; this.uri = contentSteering.uri; if (this.started) { this.startLoad(); } } onManifestParsed(event, data) { this.audioTracks = data.audioTracks; this.subtitleTracks = data.subtitleTracks; } onError(event, data) { const { errorAction } = data; if ((errorAction == null ? void 0 : errorAction.action) === NetworkErrorAction.SendAlternateToPenaltyBox && errorAction.flags === ErrorActionFlags.MoveAllAlternatesMatchingHost) { const levels = this.levels; let pathwayPriority = this.pathwayPriority; let errorPathway = this.pathwayId; if (data.context) { const { groupId, pathwayId, type } = data.context; if (groupId && levels) { errorPathway = this.getPathwayForGroupId(groupId, type, errorPathway); } else if (pathwayId) { errorPathway = pathwayId; } } if (!(errorPathway in this.penalizedPathways)) { this.penalizedPathways[errorPathway] = performance.now(); } if (!pathwayPriority && levels) { // If PATHWAY-PRIORITY was not provided, list pathways for error handling pathwayPriority = levels.reduce((pathways, level) => { if (pathways.indexOf(level.pathwayId) === -1) { pathways.push(level.pathwayId); } return pathways; }, []); } if (pathwayPriority && pathwayPriority.length > 1) { this.updatePathwayPriority(pathwayPriority); errorAction.resolved = this.pathwayId !== errorPathway; } if (!errorAction.resolved) { this.warn(`Could not resolve ${data.details} ("${data.error.message}") with content-steering for Pathway: ${errorPathway} levels: ${levels ? levels.length : levels} priorities: ${JSON.stringify(pathwayPriority)} penalized: ${JSON.stringify(this.penalizedPathways)}`); } } } filterParsedLevels(levels) { // Filter levels to only include those that are in the initial pathway this.levels = levels; let pathwayLevels = this.getLevelsForPathway(this.pathwayId); if (pathwayLevels.length === 0) { const pathwayId = levels[0].pathwayId; this.log(`No levels found in Pathway ${this.pathwayId}. Setting initial Pathway to "${pathwayId}"`); pathwayLevels = this.getLevelsForPathway(pathwayId); this.pathwayId = pathwayId; } if (pathwayLevels.length !== levels.length) { this.log(`Found ${pathwayLevels.length}/${levels.length} levels in Pathway "${this.pathwayId}"`); return pathwayLevels; } return levels; } getLevelsForPathway(pathwayId) { if (this.levels === null) { return []; } return this.levels.filter(level => pathwayId === level.pathwayId); } updatePathwayPriority(pathwayPriority) { this.pathwayPriority = pathwayPriority; let levels; // Evaluate if we should remove the pathway from the penalized list const penalizedPathways = this.penalizedPathways; const now = performance.now(); Object.keys(penalizedPathways).forEach(pathwayId => { if (now - penalizedPathways[pathwayId] > PATHWAY_PENALTY_DURATION_MS) { delete penalizedPathways[pathwayId]; } }); for (let i = 0; i < pathwayPriority.length; i++) { const pathwayId = pathwayPriority[i]; if (pathwayId in penalizedPathways) { continue; } if (pathwayId === this.pathwayId) { return; } const selectedIndex = this.hls.nextLoadLevel; const selectedLevel = this.hls.levels[selectedIndex]; levels = this.getLevelsForPathway(pathwayId); if (levels.length > 0) { this.log(`Setting Pathway to "${pathwayId}"`); this.pathwayId = pathwayId; reassignFragmentLevelIndexes(levels); this.hls.trigger(Events.LEVELS_UPDATED, { levels }); // Set LevelController's level to trigger LEVEL_SWITCHING which loads playlist if needed const levelAfterChange = this.hls.levels[selectedIndex]; if (selectedLevel && levelAfterChange && this.levels) { if (levelAfterChange.attrs['STABLE-VARIANT-ID'] !== selectedLevel.attrs['STABLE-VARIANT-ID'] && levelAfterChange.bitrate !== selectedLevel.bitrate) { this.log(`Unstable Pathways change from bitrate ${selectedLevel.bitrate} to ${levelAfterChange.bitrate}`); } this.hls.nextLoadLevel = selectedIndex; } break; } } } getPathwayForGroupId(groupId, type, defaultPathway) { const levels = this.getLevelsForPathway(defaultPathway).concat(this.levels || []); for (let i = 0; i < levels.length; i++) { if (type === PlaylistContextType.AUDIO_TRACK && levels[i].hasAudioGroup(groupId) || type === PlaylistContextType.SUBTITLE_TRACK && levels[i].hasSubtitleGroup(groupId)) { return levels[i].pathwayId; } } return defaultPathway; } clonePathways(pathwayClones) { const levels = this.levels; if (!levels) { return; } const audioGroupCloneMap = {}; const subtitleGroupCloneMap = {}; pathwayClones.forEach(pathwayClone => { const { ID: cloneId, 'BASE-ID': baseId, 'URI-REPLACEMENT': uriReplacement } = pathwayClone; if (levels.some(level => level.pathwayId === cloneId)) { return; } const clonedVariants = this.getLevelsForPathway(baseId).map(baseLevel => { const attributes = new AttrList(baseLevel.attrs); attributes['PATHWAY-ID'] = cloneId; const clonedAudioGroupId = attributes.AUDIO && `${attributes.AUDIO}_clone_${cloneId}`; const clonedSubtitleGroupId = attributes.SUBTITLES && `${attributes.SUBTITLES}_clone_${cloneId}`; if (clonedAudioGroupId) { audioGroupCloneMap[attributes.AUDIO] = clonedAudioGroupId; attributes.AUDIO = clonedAudioGroupId; } if (clonedSubtitleGroupId) { subtitleGroupCloneMap[attributes.SUBTITLES] = clonedSubtitleGroupId; attributes.SUBTITLES = clonedSubtitleGroupId; } const url = performUriReplacement(baseLevel.uri, attributes['STABLE-VARIANT-ID'], 'PER-VARIANT-URIS', uriReplacement); const clonedLevel = new Level({ attrs: attributes, audioCodec: baseLevel.audioCodec, bitrate: baseLevel.bitrate, height: baseLevel.height, name: baseLevel.name, url, videoCodec: baseLevel.videoCodec, width: baseLevel.width }); if (baseLevel.audioGroups) { for (let i = 1; i < baseLevel.audioGroups.length; i++) { clonedLevel.addGroupId('audio', `${baseLevel.audioGroups[i]}_clone_${cloneId}`); } } if (baseLevel.subtitleGroups) { for (let i = 1; i < baseLevel.subtitleGroups.length; i++) { clonedLevel.addGroupId('text', `${baseLevel.subtitleGroups[i]}_clone_${cloneId}`); } } return clonedLevel; }); levels.push(...clonedVariants); cloneRenditionGroups(this.audioTracks, audioGroupCloneMap, uriReplacement, cloneId); cloneRenditionGroups(this.subtitleTracks, subtitleGroupCloneMap, uriReplacement, cloneId); }); } loadSteeringManifest(uri) { const config = this.hls.config; const Loader = config.loader; if (this.loader) { this.loader.destroy(); } this.loader = new Loader(config); let url; try { url = new self.URL(uri); } catch (error) { this.enabled = false; this.log(`Failed to parse Steering Manifest URI: ${uri}`); return; } if (url.protocol !== 'data:') { const throughput = (this.hls.bandwidthEstimate || config.abrEwmaDefaultEstimate) | 0; url.searchParams.set('_HLS_pathway', this.pathwayId); url.searchParams.set('_HLS_throughput', '' + throughput); } const context = { responseType: 'json', url: url.href }; const loadPolicy = config.steeringManifestLoadPolicy.default; const legacyRetryCompatibility = loadPolicy.errorRetry || loadPolicy.timeoutRetry || {}; const loaderConfig = { loadPolicy, timeout: loadPolicy.maxLoadTimeMs, maxRetry: legacyRetryCompatibility.maxNumRetry || 0, retryDelay: legacyRetryCompatibility.retryDelayMs || 0, maxRetryDelay: legacyRetryCompatibility.maxRetryDelayMs || 0 }; const callbacks = { onSuccess: (response, stats, context, networkDetails) => { this.log(`Loaded steering manifest: "${url}"`); const steeringData = response.data; if ((steeringData == null ? void 0 : steeringData.VERSION) !== 1) { this.log(`Steering VERSION ${steeringData.VERSION} not supported!`); return; } this.updated = performance.now(); this.timeToLoad = steeringData.TTL; const { 'RELOAD-URI': reloadUri, 'PATHWAY-CLONES': pathwayClones, 'PATHWAY-PRIORITY': pathwayPriority } = steeringData; if (reloadUri) { try { this.uri = new self.URL(reloadUri, url).href; } catch (error) { this.enabled = false; this.log(`Failed to parse Steering Manifest RELOAD-URI: ${reloadUri}`); return; } } this.scheduleRefresh(this.uri || context.url); if (pathwayClones) { this.clonePathways(pathwayClones); } const loadedSteeringData = { steeringManifest: steeringData, url: url.toString() }; this.hls.trigger(Events.STEERING_MANIFEST_LOADED, loadedSteeringData); if (pathwayPriority) { this.updatePathwayPriority(pathwayPriority); } }, onError: (error, context, networkDetails, stats) => { this.log(`Error loading steering manifest: ${error.code} ${error.text} (${context.url})`); this.stopLoad(); if (error.code === 410) { this.enabled = false; this.log(`Steering manifest ${context.url} no longer available`); return; } let ttl = this.timeToLoad * 1000; if (error.code === 429) { const loader = this.loader; if (typeof (loader == null ? void 0 : loader.getResponseHeader) === 'function') { const retryAfter = loader.getResponseHeader('Retry-After'); if (retryAfter) { ttl = parseFloat(retryAfter) * 1000; } } this.log(`Steering manifest ${context.url} rate limited`); return; } this.scheduleRefresh(this.uri || context.url, ttl); }, onTimeout: (stats, context, networkDetails) => { this.log(`Timeout loading steering manifest (${context.url})`); this.scheduleRefresh(this.uri || context.url); } }; this.log(`Requesting steering manifest: ${url}`); this.loader.load(context, loaderConfig, callbacks); } scheduleRefresh(uri, ttlMs = this.timeToLoad * 1000) { this.clearTimeout(); this.reloadTimer = self.setTimeout(() => { var _this$hls; const media = (_this$hls = this.hls) == null ? void 0 : _this$hls.media; if (media && !media.ended) { this.loadSteeringManifest(uri); return; } this.scheduleRefresh(uri, this.timeToLoad * 1000); }, ttlMs); } } function cloneRenditionGroups(tracks, groupCloneMap, uriReplacement, cloneId) { if (!tracks) { return; } Object.keys(groupCloneMap).forEach(audioGroupId => { const clonedTracks = tracks.filter(track => track.groupId === audioGroupId).map(track => { const clonedTrack = _extends({}, track); clonedTrack.details = undefined; clonedTrack.attrs = new AttrList(clonedTrack.attrs); clonedTrack.url = clonedTrack.attrs.URI = performUriReplacement(track.url, track.attrs['STABLE-RENDITION-ID'], 'PER-RENDITION-URIS', uriReplacement); clonedTrack.groupId = clonedTrack.attrs['GROUP-ID'] = groupCloneMap[audioGroupId]; clonedTrack.attrs['PATHWAY-ID'] = cloneId; return clonedTrack; }); tracks.push(...clonedTracks); }); } function performUriReplacement(uri, stableId, perOptionKey, uriReplacement) { const { HOST: host, PARAMS: params, [perOptionKey]: perOptionUris } = uriReplacement; let perVariantUri; if (stableId) { perVariantUri = perOptionUris == null ? void 0 : perOptionUris[stableId]; if (perVariantUri) { uri = perVariantUri; } } const url = new self.URL(uri); if (host && !perVariantUri) { url.host = host; } if (params) { Object.keys(params).sort().forEach(key => { if (key) { url.searchParams.set(key, params[key]); } }); } return url.href; } const AGE_HEADER_LINE_REGEX = /^age:\s*[\d.]+\s*$/im; class XhrLoader { constructor(config) { this.xhrSetup = void 0; this.requestTimeout = void 0; this.retryTimeout = void 0; this.retryDelay = void 0; this.config = null; this.callbacks = null; this.context = null; this.loader = null; this.stats = void 0; this.xhrSetup = config ? config.xhrSetup || null : null; this.stats = new LoadStats(); this.retryDelay = 0; } destroy() { this.callbacks = null; this.abortInternal(); this.loader = null; this.config = null; this.context = null; this.xhrSetup = null; // @ts-ignore this.stats = null; } abortInternal() { const loader = this.loader; self.clearTimeout(this.requestTimeout); self.clearTimeout(this.retryTimeout); if (loader) { loader.onreadystatechange = null; loader.onprogress = null; if (loader.readyState !== 4) { this.stats.aborted = true; loader.abort(); } } } abort() { var _this$callbacks; this.abortInternal(); if ((_this$callbacks = this.callbacks) != null && _this$callbacks.onAbort) { this.callbacks.onAbort(this.stats, this.context, this.loader); } } load(context, config, callbacks) { if (this.stats.loading.start) { throw new Error('Loader can only be used once.'); } this.stats.loading.start = self.performance.now(); this.context = context; this.config = config; this.callbacks = callbacks; this.loadInternal(); } loadInternal() { const { config, context } = this; if (!config || !context) { return; } const xhr = this.loader = new self.XMLHttpRequest(); const stats = this.stats; stats.loading.first = 0; stats.loaded = 0; stats.aborted = false; const xhrSetup = this.xhrSetup; if (xhrSetup) { Promise.resolve().then(() => { if (this.stats.aborted) return; return xhrSetup(xhr, context.url); }).catch(error => { xhr.open('GET', context.url, true); return xhrSetup(xhr, context.url); }).then(() => { if (this.stats.aborted) return; this.openAndSendXhr(xhr, context, config); }).catch(error => { // IE11 throws an exception on xhr.open if attempting to access an HTTP resource over HTTPS this.callbacks.onError({ code: xhr.status, text: error.message }, context, xhr, stats); return; }); } else { this.openAndSendXhr(xhr, context, config); } } openAndSendXhr(xhr, context, config) { if (!xhr.readyState) { xhr.open('GET', context.url, true); } const headers = context.headers; const { maxTimeToFirstByteMs, maxLoadTimeMs } = config.loadPolicy; if (headers) { for (const header in headers) { xhr.setRequestHeader(header, headers[header]); } } if (context.rangeEnd) { xhr.setRequestHeader('Range', 'bytes=' + context.rangeStart + '-' + (context.rangeEnd - 1)); } xhr.onreadystatechange = this.readystatechange.bind(this); xhr.onprogress = this.loadprogress.bind(this); xhr.responseType = context.responseType; // setup timeout before we perform request self.clearTimeout(this.requestTimeout); config.timeout = maxTimeToFirstByteMs && isFiniteNumber(maxTimeToFirstByteMs) ? maxTimeToFirstByteMs : maxLoadTimeMs; this.requestTimeout = self.setTimeout(this.loadtimeout.bind(this), config.timeout); xhr.send(); } readystatechange() { const { context, loader: xhr, stats } = this; if (!context || !xhr) { return; } const readyState = xhr.readyState; const config = this.config; // don't proceed if xhr has been aborted if (stats.aborted) { return; } // >= HEADERS_RECEIVED if (readyState >= 2) { if (stats.loading.first === 0) { stats.loading.first = Math.max(self.performance.now(), stats.loading.start); // readyState >= 2 AND readyState !==4 (readyState = HEADERS_RECEIVED || LOADING) rearm timeout as xhr not finished yet if (config.timeout !== config.loadPolicy.maxLoadTimeMs) { self.clearTimeout(this.requestTimeout); config.timeout = config.loadPolicy.maxLoadTimeMs; this.requestTimeout = self.setTimeout(this.loadtimeout.bind(this), config.loadPolicy.maxLoadTimeMs - (stats.loading.first - stats.loading.start)); } } if (readyState === 4) { self.clearTimeout(this.requestTimeout); xhr.onreadystatechange = null; xhr.onprogress = null; const status = xhr.status; // http status between 200 to 299 are all successful const useResponse = xhr.responseType !== 'text'; if (status >= 200 && status < 300 && (useResponse && xhr.response || xhr.responseText !== null)) { stats.loading.end = Math.max(self.performance.now(), stats.loading.first); const data = useResponse ? xhr.response : xhr.responseText; const len = xhr.responseType === 'arraybuffer' ? data.byteLength : data.length; stats.loaded = stats.total = len; stats.bwEstimate = stats.total * 8000 / (stats.loading.end - stats.loading.first); if (!this.callbacks) { return; } const onProgress = this.callbacks.onProgress; if (onProgress) { onProgress(stats, context, data, xhr); } if (!this.callbacks) { return; } const response = { url: xhr.responseURL, data: data, code: status }; this.callbacks.onSuccess(response, stats, context, xhr); } else { const retryConfig = config.loadPolicy.errorRetry; const retryCount = stats.retry; // if max nb of retries reached or if http status between 400 and 499 (such error cannot be recovered, retrying is useless), return error const response = { url: context.url, data: undefined, code: status }; if (shouldRetry(retryConfig, retryCount, false, response)) { this.retry(retryConfig); } else { logger.error(`${status} while loading ${context.url}`); this.callbacks.onError({ code: status, text: xhr.statusText }, context, xhr, stats); } } } } } loadtimeout() { var _this$config; const retryConfig = (_this$config = this.config) == null ? void 0 : _this$config.loadPolicy.timeoutRetry; const retryCount = this.stats.retry; if (shouldRetry(retryConfig, retryCount, true)) { this.retry(retryConfig); } else { var _this$context; logger.warn(`timeout while loading ${(_this$context = this.context) == null ? void 0 : _this$context.url}`); const callbacks = this.callbacks; if (callbacks) { this.abortInternal(); callbacks.onTimeout(this.stats, this.context, this.loader); } } } retry(retryConfig) { const { context, stats } = this; this.retryDelay = getRetryDelay(retryConfig, stats.retry); stats.retry++; logger.warn(`${status ? 'HTTP Status ' + status : 'Timeout'} while loading ${context == null ? void 0 : context.url}, retrying ${stats.retry}/${retryConfig.maxNumRetry} in ${this.retryDelay}ms`); // abort and reset internal state this.abortInternal(); this.loader = null; // schedule retry self.clearTimeout(this.retryTimeout); this.retryTimeout = self.setTimeout(this.loadInternal.bind(this), this.retryDelay); } loadprogress(event) { const stats = this.stats; stats.loaded = event.loaded; if (event.lengthComputable) { stats.total = event.total; } } getCacheAge() { let result = null; if (this.loader && AGE_HEADER_LINE_REGEX.test(this.loader.getAllResponseHeaders())) { const ageHeader = this.loader.getResponseHeader('age'); result = ageHeader ? parseFloat(ageHeader) : null; } return result; } getResponseHeader(name) { if (this.loader && new RegExp(`^${name}:\\s*[\\d.]+\\s*$`, 'im').test(this.loader.getAllResponseHeaders())) { return this.loader.getResponseHeader(name); } return null; } } class ChunkCache { constructor() { this.chunks = []; this.dataLength = 0; } push(chunk) { this.chunks.push(chunk); this.dataLength += chunk.length; } flush() { const { chunks, dataLength } = this; let result; if (!chunks.length) { return new Uint8Array(0); } else if (chunks.length === 1) { result = chunks[0]; } else { result = concatUint8Arrays(chunks, dataLength); } this.reset(); return result; } reset() { this.chunks.length = 0; this.dataLength = 0; } } function concatUint8Arrays(chunks, dataLength) { const result = new Uint8Array(dataLength); let offset = 0; for (let i = 0; i < chunks.length; i++) { const chunk = chunks[i]; result.set(chunk, offset); offset += chunk.length; } return result; } function fetchSupported() { if ( // @ts-ignore self.fetch && self.AbortController && self.ReadableStream && self.Request) { try { new self.ReadableStream({}); // eslint-disable-line no-new return true; } catch (e) { /* noop */ } } return false; } const BYTERANGE = /(\d+)-(\d+)\/(\d+)/; class FetchLoader { constructor(config /* HlsConfig */) { this.fetchSetup = void 0; this.requestTimeout = void 0; this.request = null; this.response = null; this.controller = void 0; this.context = null; this.config = null; this.callbacks = null; this.stats = void 0; this.loader = null; this.fetchSetup = config.fetchSetup || getRequest; this.controller = new self.AbortController(); this.stats = new LoadStats(); } destroy() { this.loader = this.callbacks = this.context = this.config = this.request = null; this.abortInternal(); this.response = null; // @ts-ignore this.fetchSetup = this.controller = this.stats = null; } abortInternal() { if (this.controller && !this.stats.loading.end) { this.stats.aborted = true; this.controller.abort(); } } abort() { var _this$callbacks; this.abortInternal(); if ((_this$callbacks = this.callbacks) != null && _this$callbacks.onAbort) { this.callbacks.onAbort(this.stats, this.context, this.response); } } load(context, config, callbacks) { const stats = this.stats; if (stats.loading.start) { throw new Error('Loader can only be used once.'); } stats.loading.start = self.performance.now(); const initParams = getRequestParameters(context, this.controller.signal); const onProgress = callbacks.onProgress; const isArrayBuffer = context.responseType === 'arraybuffer'; const LENGTH = isArrayBuffer ? 'byteLength' : 'length'; const { maxTimeToFirstByteMs, maxLoadTimeMs } = config.loadPolicy; this.context = context; this.config = config; this.callbacks = callbacks; this.request = this.fetchSetup(context, initParams); self.clearTimeout(this.requestTimeout); config.timeout = maxTimeToFirstByteMs && isFiniteNumber(maxTimeToFirstByteMs) ? maxTimeToFirstByteMs : maxLoadTimeMs; this.requestTimeout = self.setTimeout(() => { this.abortInternal(); callbacks.onTimeout(stats, context, this.response); }, config.timeout); self.fetch(this.request).then(response => { this.response = this.loader = response; const first = Math.max(self.performance.now(), stats.loading.start); self.clearTimeout(this.requestTimeout); config.timeout = maxLoadTimeMs; this.requestTimeout = self.setTimeout(() => { this.abortInternal(); callbacks.onTimeout(stats, context, this.response); }, maxLoadTimeMs - (first - stats.loading.start)); if (!response.ok) { const { status, statusText } = response; throw new FetchError(statusText || 'fetch, bad network response', status, response); } stats.loading.first = first; stats.total = getContentLength(response.headers) || stats.total; if (onProgress && isFiniteNumber(config.highWaterMark)) { return this.loadProgressively(response, stats, context, config.highWaterMark, onProgress); } if (isArrayBuffer) { return response.arrayBuffer(); } if (context.responseType === 'json') { return response.json(); } return response.text(); }).then(responseData => { const response = this.response; if (!response) { throw new Error('loader destroyed'); } self.clearTimeout(this.requestTimeout); stats.loading.end = Math.max(self.performance.now(), stats.loading.first); const total = responseData[LENGTH]; if (total) { stats.loaded = stats.total = total; } const loaderResponse = { url: response.url, data: responseData, code: response.status }; if (onProgress && !isFiniteNumber(config.highWaterMark)) { onProgress(stats, context, responseData, response); } callbacks.onSuccess(loaderResponse, stats, context, response); }).catch(error => { self.clearTimeout(this.requestTimeout); if (stats.aborted) { return; } // CORS errors result in an undefined code. Set it to 0 here to align with XHR's behavior // when destroying, 'error' itself can be undefined const code = !error ? 0 : error.code || 0; const text = !error ? null : error.message; callbacks.onError({ code, text }, context, error ? error.details : null, stats); }); } getCacheAge() { let result = null; if (this.response) { const ageHeader = this.response.headers.get('age'); result = ageHeader ? parseFloat(ageHeader) : null; } return result; } getResponseHeader(name) { return this.response ? this.response.headers.get(name) : null; } loadProgressively(response, stats, context, highWaterMark = 0, onProgress) { const chunkCache = new ChunkCache(); const reader = response.body.getReader(); const pump = () => { return reader.read().then(data => { if (data.done) { if (chunkCache.dataLength) { onProgress(stats, context, chunkCache.flush(), response); } return Promise.resolve(new ArrayBuffer(0)); } const chunk = data.value; const len = chunk.length; stats.loaded += len; if (len < highWaterMark || chunkCache.dataLength) { // The current chunk is too small to to be emitted or the cache already has data // Push it to the cache chunkCache.push(chunk); if (chunkCache.dataLength >= highWaterMark) { // flush in order to join the typed arrays onProgress(stats, context, chunkCache.flush(), response); } } else { // If there's nothing cached already, and the chache is large enough // just emit the progress event onProgress(stats, context, chunk, response); } return pump(); }).catch(() => { /* aborted */ return Promise.reject(); }); }; return pump(); } } function getRequestParameters(context, signal) { const initParams = { method: 'GET', mode: 'cors', credentials: 'same-origin', signal, headers: new self.Headers(_extends({}, context.headers)) }; if (context.rangeEnd) { initParams.headers.set('Range', 'bytes=' + context.rangeStart + '-' + String(context.rangeEnd - 1)); } return initParams; } function getByteRangeLength(byteRangeHeader) { const result = BYTERANGE.exec(byteRangeHeader); if (result) { return parseInt(result[2]) - parseInt(result[1]) + 1; } } function getContentLength(headers) { const contentRange = headers.get('Content-Range'); if (contentRange) { const byteRangeLength = getByteRangeLength(contentRange); if (isFiniteNumber(byteRangeLength)) { return byteRangeLength; } } const contentLength = headers.get('Content-Length'); if (contentLength) { return parseInt(contentLength); } } function getRequest(context, initParams) { return new self.Request(context.url, initParams); } class FetchError extends Error { constructor(message, code, details) { super(message); this.code = void 0; this.details = void 0; this.code = code; this.details = details; } } /** * @deprecated use fragLoadPolicy.default */ /** * @deprecated use manifestLoadPolicy.default and playlistLoadPolicy.default */ const defaultLoadPolicy = { maxTimeToFirstByteMs: 8000, maxLoadTimeMs: 20000, timeoutRetry: null, errorRetry: null }; /** * @ignore * If possible, keep hlsDefaultConfig shallow * It is cloned whenever a new Hls instance is created, by keeping the config * shallow the properties are cloned, and we don't end up manipulating the default */ const hlsDefaultConfig = _objectSpread2(_objectSpread2({ autoStartLoad: true, // used by stream-controller startPosition: -1, // used by stream-controller defaultAudioCodec: undefined, // used by stream-controller debug: false, // used by logger capLevelOnFPSDrop: false, // used by fps-controller capLevelToPlayerSize: false, // used by cap-level-controller ignoreDevicePixelRatio: false, // used by cap-level-controller preferManagedMediaSource: true, initialLiveManifestSize: 1, // used by stream-controller maxBufferLength: 30, // used by stream-controller backBufferLength: Infinity, // used by buffer-controller frontBufferFlushThreshold: Infinity, maxBufferSize: 60 * 1000 * 1000, // used by stream-controller maxBufferHole: 0.1, // used by stream-controller highBufferWatchdogPeriod: 2, // used by stream-controller nudgeOffset: 0.1, // used by stream-controller nudgeMaxRetry: 3, // used by stream-controller maxFragLookUpTolerance: 0.25, // used by stream-controller liveSyncDurationCount: 3, // used by latency-controller liveMaxLatencyDurationCount: Infinity, // used by latency-controller liveSyncDuration: undefined, // used by latency-controller liveMaxLatencyDuration: undefined, // used by latency-controller maxLiveSyncPlaybackRate: 1, // used by latency-controller liveDurationInfinity: false, // used by buffer-controller /** * @deprecated use backBufferLength */ liveBackBufferLength: null, // used by buffer-controller maxMaxBufferLength: 600, // used by stream-controller enableWorker: true, // used by transmuxer workerPath: null, // used by transmuxer enableSoftwareAES: true, // used by decrypter startLevel: undefined, // used by level-controller startFragPrefetch: false, // used by stream-controller fpsDroppedMonitoringPeriod: 5000, // used by fps-controller fpsDroppedMonitoringThreshold: 0.2, // used by fps-controller appendErrorMaxRetry: 3, // used by buffer-controller loader: XhrLoader, // loader: FetchLoader, fLoader: undefined, // used by fragment-loader pLoader: undefined, // used by playlist-loader xhrSetup: undefined, // used by xhr-loader licenseXhrSetup: undefined, // used by eme-controller licenseResponseCallback: undefined, // used by eme-controller abrController: AbrController, bufferController: BufferController, capLevelController: CapLevelController, errorController: ErrorController, fpsController: FPSController, stretchShortVideoTrack: false, // used by mp4-remuxer maxAudioFramesDrift: 1, // used by mp4-remuxer forceKeyFrameOnDiscontinuity: true, // used by ts-demuxer abrEwmaFastLive: 3, // used by abr-controller abrEwmaSlowLive: 9, // used by abr-controller abrEwmaFastVoD: 3, // used by abr-controller abrEwmaSlowVoD: 9, // used by abr-controller abrEwmaDefaultEstimate: 5e5, // 500 kbps // used by abr-controller abrEwmaDefaultEstimateMax: 5e6, // 5 mbps abrBandWidthFactor: 0.95, // used by abr-controller abrBandWidthUpFactor: 0.7, // used by abr-controller abrMaxWithRealBitrate: false, // used by abr-controller maxStarvationDelay: 4, // used by abr-controller maxLoadingDelay: 4, // used by abr-controller minAutoBitrate: 0, // used by hls emeEnabled: false, // used by eme-controller widevineLicenseUrl: undefined, // used by eme-controller drmSystems: {}, // used by eme-controller drmSystemOptions: {}, // used by eme-controller requestMediaKeySystemAccessFunc: null, // used by eme-controller testBandwidth: true, progressive: false, lowLatencyMode: true, cmcd: undefined, enableDateRangeMetadataCues: true, enableEmsgMetadataCues: true, enableID3MetadataCues: true, useMediaCapabilities: false, certLoadPolicy: { default: defaultLoadPolicy }, keyLoadPolicy: { default: { maxTimeToFirstByteMs: 8000, maxLoadTimeMs: 20000, timeoutRetry: { maxNumRetry: 1, retryDelayMs: 1000, maxRetryDelayMs: 20000, backoff: 'linear' }, errorRetry: { maxNumRetry: 8, retryDelayMs: 1000, maxRetryDelayMs: 20000, backoff: 'linear' } } }, manifestLoadPolicy: { default: { maxTimeToFirstByteMs: Infinity, maxLoadTimeMs: 20000, timeoutRetry: { maxNumRetry: 2, retryDelayMs: 0, maxRetryDelayMs: 0 }, errorRetry: { maxNumRetry: 1, retryDelayMs: 1000, maxRetryDelayMs: 8000 } } }, playlistLoadPolicy: { default: { maxTimeToFirstByteMs: 10000, maxLoadTimeMs: 20000, timeoutRetry: { maxNumRetry: 2, retryDelayMs: 0, maxRetryDelayMs: 0 }, errorRetry: { maxNumRetry: 2, retryDelayMs: 1000, maxRetryDelayMs: 8000 } } }, fragLoadPolicy: { default: { maxTimeToFirstByteMs: 10000, maxLoadTimeMs: 120000, timeoutRetry: { maxNumRetry: 4, retryDelayMs: 0, maxRetryDelayMs: 0 }, errorRetry: { maxNumRetry: 6, retryDelayMs: 1000, maxRetryDelayMs: 8000 } } }, steeringManifestLoadPolicy: { default: { maxTimeToFirstByteMs: 10000, maxLoadTimeMs: 20000, timeoutRetry: { maxNumRetry: 2, retryDelayMs: 0, maxRetryDelayMs: 0 }, errorRetry: { maxNumRetry: 1, retryDelayMs: 1000, maxRetryDelayMs: 8000 } } }, // These default settings are deprecated in favor of the above policies // and are maintained for backwards compatibility manifestLoadingTimeOut: 10000, manifestLoadingMaxRetry: 1, manifestLoadingRetryDelay: 1000, manifestLoadingMaxRetryTimeout: 64000, levelLoadingTimeOut: 10000, levelLoadingMaxRetry: 4, levelLoadingRetryDelay: 1000, levelLoadingMaxRetryTimeout: 64000, fragLoadingTimeOut: 20000, fragLoadingMaxRetry: 6, fragLoadingRetryDelay: 1000, fragLoadingMaxRetryTimeout: 64000 }, timelineConfig()), {}, { subtitleStreamController: undefined, subtitleTrackController: undefined, timelineController: undefined, audioStreamController: undefined, audioTrackController: undefined, emeController: undefined, cmcdController: undefined, contentSteeringController: ContentSteeringController }); function timelineConfig() { return { cueHandler: Cues, // used by timeline-controller enableWebVTT: false, // used by timeline-controller enableIMSC1: false, // used by timeline-controller enableCEA708Captions: false, // used by timeline-controller captionsTextTrack1Label: 'English', // used by timeline-controller captionsTextTrack1LanguageCode: 'en', // used by timeline-controller captionsTextTrack2Label: 'Spanish', // used by timeline-controller captionsTextTrack2LanguageCode: 'es', // used by timeline-controller captionsTextTrack3Label: 'Unknown CC', // used by timeline-controller captionsTextTrack3LanguageCode: '', // used by timeline-controller captionsTextTrack4Label: 'Unknown CC', // used by timeline-controller captionsTextTrack4LanguageCode: '', // used by timeline-controller renderTextTracksNatively: true }; } /** * @ignore */ function mergeConfig(defaultConfig, userConfig, logger) { if ((userConfig.liveSyncDurationCount || userConfig.liveMaxLatencyDurationCount) && (userConfig.liveSyncDuration || userConfig.liveMaxLatencyDuration)) { throw new Error("Illegal hls.js config: don't mix up liveSyncDurationCount/liveMaxLatencyDurationCount and liveSyncDuration/liveMaxLatencyDuration"); } if (userConfig.liveMaxLatencyDurationCount !== undefined && (userConfig.liveSyncDurationCount === undefined || userConfig.liveMaxLatencyDurationCount <= userConfig.liveSyncDurationCount)) { throw new Error('Illegal hls.js config: "liveMaxLatencyDurationCount" must be greater than "liveSyncDurationCount"'); } if (userConfig.liveMaxLatencyDuration !== undefined && (userConfig.liveSyncDuration === undefined || userConfig.liveMaxLatencyDuration <= userConfig.liveSyncDuration)) { throw new Error('Illegal hls.js config: "liveMaxLatencyDuration" must be greater than "liveSyncDuration"'); } const defaultsCopy = deepCpy(defaultConfig); // Backwards compatibility with deprecated config values const deprecatedSettingTypes = ['manifest', 'level', 'frag']; const deprecatedSettings = ['TimeOut', 'MaxRetry', 'RetryDelay', 'MaxRetryTimeout']; deprecatedSettingTypes.forEach(type => { const policyName = `${type === 'level' ? 'playlist' : type}LoadPolicy`; const policyNotSet = userConfig[policyName] === undefined; const report = []; deprecatedSettings.forEach(setting => { const deprecatedSetting = `${type}Loading${setting}`; const value = userConfig[deprecatedSetting]; if (value !== undefined && policyNotSet) { report.push(deprecatedSetting); const settings = defaultsCopy[policyName].default; userConfig[policyName] = { default: settings }; switch (setting) { case 'TimeOut': settings.maxLoadTimeMs = value; settings.maxTimeToFirstByteMs = value; break; case 'MaxRetry': settings.errorRetry.maxNumRetry = value; settings.timeoutRetry.maxNumRetry = value; break; case 'RetryDelay': settings.errorRetry.retryDelayMs = value; settings.timeoutRetry.retryDelayMs = value; break; case 'MaxRetryTimeout': settings.errorRetry.maxRetryDelayMs = value; settings.timeoutRetry.maxRetryDelayMs = value; break; } } }); if (report.length) { logger.warn(`hls.js config: "${report.join('", "')}" setting(s) are deprecated, use "${policyName}": ${JSON.stringify(userConfig[policyName])}`); } }); return _objectSpread2(_objectSpread2({}, defaultsCopy), userConfig); } function deepCpy(obj) { if (obj && typeof obj === 'object') { if (Array.isArray(obj)) { return obj.map(deepCpy); } return Object.keys(obj).reduce((result, key) => { result[key] = deepCpy(obj[key]); return result; }, {}); } return obj; } /** * @ignore */ function enableStreamingMode(config, logger) { const currentLoader = config.loader; if (currentLoader !== FetchLoader && currentLoader !== XhrLoader) { // If a developer has configured their own loader, respect that choice logger.log('[config]: Custom loader detected, cannot enable progressive streaming'); config.progressive = false; } else { const canStreamProgressively = fetchSupported(); if (canStreamProgressively) { config.loader = FetchLoader; config.progressive = true; config.enableSoftwareAES = true; logger.log('[config]: Progressive streaming enabled, using FetchLoader'); } } } class LevelController extends BasePlaylistController { constructor(hls, contentSteeringController) { super(hls, 'level-controller'); this._levels = []; this._firstLevel = -1; this._maxAutoLevel = -1; this._startLevel = void 0; this.currentLevel = null; this.currentLevelIndex = -1; this.manualLevelIndex = -1; this.steering = void 0; this.onParsedComplete = void 0; this.steering = contentSteeringController; this._registerListeners(); } _registerListeners() { const { hls } = this; hls.on(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.on(Events.MANIFEST_LOADED, this.onManifestLoaded, this); hls.on(Events.LEVEL_LOADED, this.onLevelLoaded, this); hls.on(Events.LEVELS_UPDATED, this.onLevelsUpdated, this); hls.on(Events.FRAG_BUFFERED, this.onFragBuffered, this); hls.on(Events.ERROR, this.onError, this); } _unregisterListeners() { const { hls } = this; hls.off(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.off(Events.MANIFEST_LOADED, this.onManifestLoaded, this); hls.off(Events.LEVEL_LOADED, this.onLevelLoaded, this); hls.off(Events.LEVELS_UPDATED, this.onLevelsUpdated, this); hls.off(Events.FRAG_BUFFERED, this.onFragBuffered, this); hls.off(Events.ERROR, this.onError, this); } destroy() { this._unregisterListeners(); this.steering = null; this.resetLevels(); super.destroy(); } stopLoad() { const levels = this._levels; // clean up live level details to force reload them, and reset load errors levels.forEach(level => { level.loadError = 0; level.fragmentError = 0; }); super.stopLoad(); } resetLevels() { this._startLevel = undefined; this.manualLevelIndex = -1; this.currentLevelIndex = -1; this.currentLevel = null; this._levels = []; this._maxAutoLevel = -1; } onManifestLoading(event, data) { this.resetLevels(); } onManifestLoaded(event, data) { const preferManagedMediaSource = this.hls.config.preferManagedMediaSource; const levels = []; const redundantSet = {}; const generatePathwaySet = {}; let resolutionFound = false; let videoCodecFound = false; let audioCodecFound = false; data.levels.forEach(levelParsed => { var _videoCodec; const attributes = levelParsed.attrs; let { audioCodec, videoCodec } = levelParsed; if (audioCodec) { // Returns empty and set to undefined for 'mp4a.40.34' with fallback to 'audio/mpeg' SourceBuffer levelParsed.audioCodec = audioCodec = getCodecCompatibleName(audioCodec, preferManagedMediaSource) || undefined; } if (((_videoCodec = videoCodec) == null ? void 0 : _videoCodec.indexOf('avc1')) === 0) { videoCodec = levelParsed.videoCodec = convertAVC1ToAVCOTI(videoCodec); } // only keep levels with supported audio/video codecs const { width, height, unknownCodecs } = levelParsed; resolutionFound || (resolutionFound = !!(width && height)); videoCodecFound || (videoCodecFound = !!videoCodec); audioCodecFound || (audioCodecFound = !!audioCodec); if (unknownCodecs != null && unknownCodecs.length || audioCodec && !areCodecsMediaSourceSupported(audioCodec, 'audio', preferManagedMediaSource) || videoCodec && !areCodecsMediaSourceSupported(videoCodec, 'video', preferManagedMediaSource)) { return; } const { CODECS, 'FRAME-RATE': FRAMERATE, 'HDCP-LEVEL': HDCP, 'PATHWAY-ID': PATHWAY, RESOLUTION, 'VIDEO-RANGE': VIDEO_RANGE } = attributes; const contentSteeringPrefix = `${PATHWAY || '.'}-`; const levelKey = `${contentSteeringPrefix}${levelParsed.bitrate}-${RESOLUTION}-${FRAMERATE}-${CODECS}-${VIDEO_RANGE}-${HDCP}`; if (!redundantSet[levelKey]) { const level = new Level(levelParsed); redundantSet[levelKey] = level; generatePathwaySet[levelKey] = 1; levels.push(level); } else if (redundantSet[levelKey].uri !== levelParsed.url && !levelParsed.attrs['PATHWAY-ID']) { // Assign Pathway IDs to Redundant Streams (default Pathways is ".". Redundant Streams "..", "...", and so on.) // Content Steering controller to handles Pathway fallback on error const pathwayCount = generatePathwaySet[levelKey] += 1; levelParsed.attrs['PATHWAY-ID'] = new Array(pathwayCount + 1).join('.'); const level = new Level(levelParsed); redundantSet[levelKey] = level; levels.push(level); } else { redundantSet[levelKey].addGroupId('audio', attributes.AUDIO); redundantSet[levelKey].addGroupId('text', attributes.SUBTITLES); } }); this.filterAndSortMediaOptions(levels, data, resolutionFound, videoCodecFound, audioCodecFound); } filterAndSortMediaOptions(filteredLevels, data, resolutionFound, videoCodecFound, audioCodecFound) { let audioTracks = []; let subtitleTracks = []; let levels = filteredLevels; // remove audio-only and invalid video-range levels if we also have levels with video codecs or RESOLUTION signalled if ((resolutionFound || videoCodecFound) && audioCodecFound) { levels = levels.filter(({ videoCodec, videoRange, width, height }) => (!!videoCodec || !!(width && height)) && isVideoRange(videoRange)); } if (levels.length === 0) { // Dispatch error after MANIFEST_LOADED is done propagating Promise.resolve().then(() => { if (this.hls) { if (data.levels.length) { this.warn(`One or more CODECS in variant not supported: ${JSON.stringify(data.levels[0].attrs)}`); } const error = new Error('no level with compatible codecs found in manifest'); this.hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.MANIFEST_INCOMPATIBLE_CODECS_ERROR, fatal: true, url: data.url, error, reason: error.message }); } }); return; } if (data.audioTracks) { const { preferManagedMediaSource } = this.hls.config; audioTracks = data.audioTracks.filter(track => !track.audioCodec || areCodecsMediaSourceSupported(track.audioCodec, 'audio', preferManagedMediaSource)); // Assign ids after filtering as array indices by group-id assignTrackIdsByGroup(audioTracks); } if (data.subtitles) { subtitleTracks = data.subtitles; assignTrackIdsByGroup(subtitleTracks); } // start bitrate is the first bitrate of the manifest const unsortedLevels = levels.slice(0); // sort levels from lowest to highest levels.sort((a, b) => { if (a.attrs['HDCP-LEVEL'] !== b.attrs['HDCP-LEVEL']) { return (a.attrs['HDCP-LEVEL'] || '') > (b.attrs['HDCP-LEVEL'] || '') ? 1 : -1; } // sort on height before bitrate for cap-level-controller if (resolutionFound && a.height !== b.height) { return a.height - b.height; } if (a.frameRate !== b.frameRate) { return a.frameRate - b.frameRate; } if (a.videoRange !== b.videoRange) { return VideoRangeValues.indexOf(a.videoRange) - VideoRangeValues.indexOf(b.videoRange); } if (a.videoCodec !== b.videoCodec) { const valueA = videoCodecPreferenceValue(a.videoCodec); const valueB = videoCodecPreferenceValue(b.videoCodec); if (valueA !== valueB) { return valueB - valueA; } } if (a.uri === b.uri && a.codecSet !== b.codecSet) { const valueA = codecsSetSelectionPreferenceValue(a.codecSet); const valueB = codecsSetSelectionPreferenceValue(b.codecSet); if (valueA !== valueB) { return valueB - valueA; } } if (a.averageBitrate !== b.averageBitrate) { return a.averageBitrate - b.averageBitrate; } return 0; }); let firstLevelInPlaylist = unsortedLevels[0]; if (this.steering) { levels = this.steering.filterParsedLevels(levels); if (levels.length !== unsortedLevels.length) { for (let i = 0; i < unsortedLevels.length; i++) { if (unsortedLevels[i].pathwayId === levels[0].pathwayId) { firstLevelInPlaylist = unsortedLevels[i]; break; } } } } this._levels = levels; // find index of first level in sorted levels for (let i = 0; i < levels.length; i++) { if (levels[i] === firstLevelInPlaylist) { var _this$hls$userConfig; this._firstLevel = i; const firstLevelBitrate = firstLevelInPlaylist.bitrate; const bandwidthEstimate = this.hls.bandwidthEstimate; this.log(`manifest loaded, ${levels.length} level(s) found, first bitrate: ${firstLevelBitrate}`); // Update default bwe to first variant bitrate as long it has not been configured or set if (((_this$hls$userConfig = this.hls.userConfig) == null ? void 0 : _this$hls$userConfig.abrEwmaDefaultEstimate) === undefined) { const startingBwEstimate = Math.min(firstLevelBitrate, this.hls.config.abrEwmaDefaultEstimateMax); if (startingBwEstimate > bandwidthEstimate && bandwidthEstimate === hlsDefaultConfig.abrEwmaDefaultEstimate) { this.hls.bandwidthEstimate = startingBwEstimate; } } break; } } // Audio is only alternate if manifest include a URI along with the audio group tag, // and this is not an audio-only stream where levels contain audio-only const audioOnly = audioCodecFound && !videoCodecFound; const edata = { levels, audioTracks, subtitleTracks, sessionData: data.sessionData, sessionKeys: data.sessionKeys, firstLevel: this._firstLevel, stats: data.stats, audio: audioCodecFound, video: videoCodecFound, altAudio: !audioOnly && audioTracks.some(t => !!t.url) }; this.hls.trigger(Events.MANIFEST_PARSED, edata); // Initiate loading after all controllers have received MANIFEST_PARSED if (this.hls.config.autoStartLoad || this.hls.forceStartLoad) { this.hls.startLoad(this.hls.config.startPosition); } } get levels() { if (this._levels.length === 0) { return null; } return this._levels; } get level() { return this.currentLevelIndex; } set level(newLevel) { const levels = this._levels; if (levels.length === 0) { return; } // check if level idx is valid if (newLevel < 0 || newLevel >= levels.length) { // invalid level id given, trigger error const error = new Error('invalid level idx'); const fatal = newLevel < 0; this.hls.trigger(Events.ERROR, { type: ErrorTypes.OTHER_ERROR, details: ErrorDetails.LEVEL_SWITCH_ERROR, level: newLevel, fatal, error, reason: error.message }); if (fatal) { return; } newLevel = Math.min(newLevel, levels.length - 1); } const lastLevelIndex = this.currentLevelIndex; const lastLevel = this.currentLevel; const lastPathwayId = lastLevel ? lastLevel.attrs['PATHWAY-ID'] : undefined; const level = levels[newLevel]; const pathwayId = level.attrs['PATHWAY-ID']; this.currentLevelIndex = newLevel; this.currentLevel = level; if (lastLevelIndex === newLevel && level.details && lastLevel && lastPathwayId === pathwayId) { return; } this.log(`Switching to level ${newLevel} (${level.height ? level.height + 'p ' : ''}${level.videoRange ? level.videoRange + ' ' : ''}${level.codecSet ? level.codecSet + ' ' : ''}@${level.bitrate})${pathwayId ? ' with Pathway ' + pathwayId : ''} from level ${lastLevelIndex}${lastPathwayId ? ' with Pathway ' + lastPathwayId : ''}`); const levelSwitchingData = { level: newLevel, attrs: level.attrs, details: level.details, bitrate: level.bitrate, averageBitrate: level.averageBitrate, maxBitrate: level.maxBitrate, realBitrate: level.realBitrate, width: level.width, height: level.height, codecSet: level.codecSet, audioCodec: level.audioCodec, videoCodec: level.videoCodec, audioGroups: level.audioGroups, subtitleGroups: level.subtitleGroups, loaded: level.loaded, loadError: level.loadError, fragmentError: level.fragmentError, name: level.name, id: level.id, uri: level.uri, url: level.url, urlId: 0, audioGroupIds: level.audioGroupIds, textGroupIds: level.textGroupIds }; this.hls.trigger(Events.LEVEL_SWITCHING, levelSwitchingData); // check if we need to load playlist for this level const levelDetails = level.details; if (!levelDetails || levelDetails.live) { // level not retrieved yet, or live playlist we need to (re)load it const hlsUrlParameters = this.switchParams(level.uri, lastLevel == null ? void 0 : lastLevel.details); this.loadPlaylist(hlsUrlParameters); } } get manualLevel() { return this.manualLevelIndex; } set manualLevel(newLevel) { this.manualLevelIndex = newLevel; if (this._startLevel === undefined) { this._startLevel = newLevel; } if (newLevel !== -1) { this.level = newLevel; } } get firstLevel() { return this._firstLevel; } set firstLevel(newLevel) { this._firstLevel = newLevel; } get startLevel() { // Setting hls.startLevel (this._startLevel) overrides config.startLevel if (this._startLevel === undefined) { const configStartLevel = this.hls.config.startLevel; if (configStartLevel !== undefined) { return configStartLevel; } return this.hls.firstAutoLevel; } return this._startLevel; } set startLevel(newLevel) { this._startLevel = newLevel; } onError(event, data) { if (data.fatal || !data.context) { return; } if (data.context.type === PlaylistContextType.LEVEL && data.context.level === this.level) { this.checkRetry(data); } } // reset errors on the successful load of a fragment onFragBuffered(event, { frag }) { if (frag !== undefined && frag.type === PlaylistLevelType.MAIN) { const el = frag.elementaryStreams; if (!Object.keys(el).some(type => !!el[type])) { return; } const level = this._levels[frag.level]; if (level != null && level.loadError) { this.log(`Resetting level error count of ${level.loadError} on frag buffered`); level.loadError = 0; } } } onLevelLoaded(event, data) { var _data$deliveryDirecti2; const { level, details } = data; const curLevel = this._levels[level]; if (!curLevel) { var _data$deliveryDirecti; this.warn(`Invalid level index ${level}`); if ((_data$deliveryDirecti = data.deliveryDirectives) != null && _data$deliveryDirecti.skip) { details.deltaUpdateFailed = true; } return; } // only process level loaded events matching with expected level if (level === this.currentLevelIndex) { // reset level load error counter on successful level loaded only if there is no issues with fragments if (curLevel.fragmentError === 0) { curLevel.loadError = 0; } this.playlistLoaded(level, data, curLevel.details); } else if ((_data$deliveryDirecti2 = data.deliveryDirectives) != null && _data$deliveryDirecti2.skip) { // received a delta playlist update that cannot be merged details.deltaUpdateFailed = true; } } loadPlaylist(hlsUrlParameters) { super.loadPlaylist(); const currentLevelIndex = this.currentLevelIndex; const currentLevel = this.currentLevel; if (currentLevel && this.shouldLoadPlaylist(currentLevel)) { let url = currentLevel.uri; if (hlsUrlParameters) { try { url = hlsUrlParameters.addDirectives(url); } catch (error) { this.warn(`Could not construct new URL with HLS Delivery Directives: ${error}`); } } const pathwayId = currentLevel.attrs['PATHWAY-ID']; this.log(`Loading level index ${currentLevelIndex}${(hlsUrlParameters == null ? void 0 : hlsUrlParameters.msn) !== undefined ? ' at sn ' + hlsUrlParameters.msn + ' part ' + hlsUrlParameters.part : ''} with${pathwayId ? ' Pathway ' + pathwayId : ''} ${url}`); // console.log('Current audio track group ID:', this.hls.audioTracks[this.hls.audioTrack].groupId); // console.log('New video quality level audio group id:', levelObject.attrs.AUDIO, level); this.clearTimer(); this.hls.trigger(Events.LEVEL_LOADING, { url, level: currentLevelIndex, pathwayId: currentLevel.attrs['PATHWAY-ID'], id: 0, // Deprecated Level urlId deliveryDirectives: hlsUrlParameters || null }); } } get nextLoadLevel() { if (this.manualLevelIndex !== -1) { return this.manualLevelIndex; } else { return this.hls.nextAutoLevel; } } set nextLoadLevel(nextLevel) { this.level = nextLevel; if (this.manualLevelIndex === -1) { this.hls.nextAutoLevel = nextLevel; } } removeLevel(levelIndex) { var _this$currentLevel; const levels = this._levels.filter((level, index) => { if (index !== levelIndex) { return true; } if (this.steering) { this.steering.removeLevel(level); } if (level === this.currentLevel) { this.currentLevel = null; this.currentLevelIndex = -1; if (level.details) { level.details.fragments.forEach(f => f.level = -1); } } return false; }); reassignFragmentLevelIndexes(levels); this._levels = levels; if (this.currentLevelIndex > -1 && (_this$currentLevel = this.currentLevel) != null && _this$currentLevel.details) { this.currentLevelIndex = this.currentLevel.details.fragments[0].level; } this.hls.trigger(Events.LEVELS_UPDATED, { levels }); } onLevelsUpdated(event, { levels }) { this._levels = levels; } checkMaxAutoUpdated() { const { autoLevelCapping, maxAutoLevel, maxHdcpLevel } = this.hls; if (this._maxAutoLevel !== maxAutoLevel) { this._maxAutoLevel = maxAutoLevel; this.hls.trigger(Events.MAX_AUTO_LEVEL_UPDATED, { autoLevelCapping, levels: this.levels, maxAutoLevel, minAutoLevel: this.hls.minAutoLevel, maxHdcpLevel }); } } } function assignTrackIdsByGroup(tracks) { const groups = {}; tracks.forEach(track => { const groupId = track.groupId || ''; track.id = groups[groupId] = groups[groupId] || 0; groups[groupId]++; }); } var FragmentState = { NOT_LOADED: "NOT_LOADED", APPENDING: "APPENDING", PARTIAL: "PARTIAL", OK: "OK" }; class FragmentTracker { constructor(hls) { this.activePartLists = Object.create(null); this.endListFragments = Object.create(null); this.fragments = Object.create(null); this.timeRanges = Object.create(null); this.bufferPadding = 0.2; this.hls = void 0; this.hasGaps = false; this.hls = hls; this._registerListeners(); } _registerListeners() { const { hls } = this; hls.on(Events.BUFFER_APPENDED, this.onBufferAppended, this); hls.on(Events.FRAG_BUFFERED, this.onFragBuffered, this); hls.on(Events.FRAG_LOADED, this.onFragLoaded, this); } _unregisterListeners() { const { hls } = this; hls.off(Events.BUFFER_APPENDED, this.onBufferAppended, this); hls.off(Events.FRAG_BUFFERED, this.onFragBuffered, this); hls.off(Events.FRAG_LOADED, this.onFragLoaded, this); } destroy() { this._unregisterListeners(); // @ts-ignore this.fragments = // @ts-ignore this.activePartLists = // @ts-ignore this.endListFragments = this.timeRanges = null; } /** * Return a Fragment or Part with an appended range that matches the position and levelType * Otherwise, return null */ getAppendedFrag(position, levelType) { const activeParts = this.activePartLists[levelType]; if (activeParts) { for (let i = activeParts.length; i--;) { const activePart = activeParts[i]; if (!activePart) { break; } const appendedPTS = activePart.end; if (activePart.start <= position && appendedPTS !== null && position <= appendedPTS) { return activePart; } } } return this.getBufferedFrag(position, levelType); } /** * Return a buffered Fragment that matches the position and levelType. * A buffered Fragment is one whose loading, parsing and appending is done (completed or "partial" meaning aborted). * If not found any Fragment, return null */ getBufferedFrag(position, levelType) { const { fragments } = this; const keys = Object.keys(fragments); for (let i = keys.length; i--;) { const fragmentEntity = fragments[keys[i]]; if ((fragmentEntity == null ? void 0 : fragmentEntity.body.type) === levelType && fragmentEntity.buffered) { const frag = fragmentEntity.body; if (frag.start <= position && position <= frag.end) { return frag; } } } return null; } /** * Partial fragments effected by coded frame eviction will be removed * The browser will unload parts of the buffer to free up memory for new buffer data * Fragments will need to be reloaded when the buffer is freed up, removing partial fragments will allow them to reload(since there might be parts that are still playable) */ detectEvictedFragments(elementaryStream, timeRange, playlistType, appendedPart) { if (this.timeRanges) { this.timeRanges[elementaryStream] = timeRange; } // Check if any flagged fragments have been unloaded // excluding anything newer than appendedPartSn const appendedPartSn = (appendedPart == null ? void 0 : appendedPart.fragment.sn) || -1; Object.keys(this.fragments).forEach(key => { const fragmentEntity = this.fragments[key]; if (!fragmentEntity) { return; } if (appendedPartSn >= fragmentEntity.body.sn) { return; } if (!fragmentEntity.buffered && !fragmentEntity.loaded) { if (fragmentEntity.body.type === playlistType) { this.removeFragment(fragmentEntity.body); } return; } const esData = fragmentEntity.range[elementaryStream]; if (!esData) { return; } esData.time.some(time => { const isNotBuffered = !this.isTimeBuffered(time.startPTS, time.endPTS, timeRange); if (isNotBuffered) { // Unregister partial fragment as it needs to load again to be reused this.removeFragment(fragmentEntity.body); } return isNotBuffered; }); }); } /** * Checks if the fragment passed in is loaded in the buffer properly * Partially loaded fragments will be registered as a partial fragment */ detectPartialFragments(data) { const timeRanges = this.timeRanges; const { frag, part } = data; if (!timeRanges || frag.sn === 'initSegment') { return; } const fragKey = getFragmentKey(frag); const fragmentEntity = this.fragments[fragKey]; if (!fragmentEntity || fragmentEntity.buffered && frag.gap) { return; } const isFragHint = !frag.relurl; Object.keys(timeRanges).forEach(elementaryStream => { const streamInfo = frag.elementaryStreams[elementaryStream]; if (!streamInfo) { return; } const timeRange = timeRanges[elementaryStream]; const partial = isFragHint || streamInfo.partial === true; fragmentEntity.range[elementaryStream] = this.getBufferedTimes(frag, part, partial, timeRange); }); fragmentEntity.loaded = null; if (Object.keys(fragmentEntity.range).length) { fragmentEntity.buffered = true; const endList = fragmentEntity.body.endList = frag.endList || fragmentEntity.body.endList; if (endList) { this.endListFragments[fragmentEntity.body.type] = fragmentEntity; } if (!isPartial(fragmentEntity)) { // Remove older fragment parts from lookup after frag is tracked as buffered this.removeParts(frag.sn - 1, frag.type); } } else { // remove fragment if nothing was appended this.removeFragment(fragmentEntity.body); } } removeParts(snToKeep, levelType) { const activeParts = this.activePartLists[levelType]; if (!activeParts) { return; } this.activePartLists[levelType] = activeParts.filter(part => part.fragment.sn >= snToKeep); } fragBuffered(frag, force) { const fragKey = getFragmentKey(frag); let fragmentEntity = this.fragments[fragKey]; if (!fragmentEntity && force) { fragmentEntity = this.fragments[fragKey] = { body: frag, appendedPTS: null, loaded: null, buffered: false, range: Object.create(null) }; if (frag.gap) { this.hasGaps = true; } } if (fragmentEntity) { fragmentEntity.loaded = null; fragmentEntity.buffered = true; } } getBufferedTimes(fragment, part, partial, timeRange) { const buffered = { time: [], partial }; const startPTS = fragment.start; const endPTS = fragment.end; const minEndPTS = fragment.minEndPTS || endPTS; const maxStartPTS = fragment.maxStartPTS || startPTS; for (let i = 0; i < timeRange.length; i++) { const startTime = timeRange.start(i) - this.bufferPadding; const endTime = timeRange.end(i) + this.bufferPadding; if (maxStartPTS >= startTime && minEndPTS <= endTime) { // Fragment is entirely contained in buffer // No need to check the other timeRange times since it's completely playable buffered.time.push({ startPTS: Math.max(startPTS, timeRange.start(i)), endPTS: Math.min(endPTS, timeRange.end(i)) }); break; } else if (startPTS < endTime && endPTS > startTime) { const start = Math.max(startPTS, timeRange.start(i)); const end = Math.min(endPTS, timeRange.end(i)); if (end > start) { buffered.partial = true; // Check for intersection with buffer // Get playable sections of the fragment buffered.time.push({ startPTS: start, endPTS: end }); } } else if (endPTS <= startTime) { // No need to check the rest of the timeRange as it is in order break; } } return buffered; } /** * Gets the partial fragment for a certain time */ getPartialFragment(time) { let bestFragment = null; let timePadding; let startTime; let endTime; let bestOverlap = 0; const { bufferPadding, fragments } = this; Object.keys(fragments).forEach(key => { const fragmentEntity = fragments[key]; if (!fragmentEntity) { return; } if (isPartial(fragmentEntity)) { startTime = fragmentEntity.body.start - bufferPadding; endTime = fragmentEntity.body.end + bufferPadding; if (time >= startTime && time <= endTime) { // Use the fragment that has the most padding from start and end time timePadding = Math.min(time - startTime, endTime - time); if (bestOverlap <= timePadding) { bestFragment = fragmentEntity.body; bestOverlap = timePadding; } } } }); return bestFragment; } isEndListAppended(type) { const lastFragmentEntity = this.endListFragments[type]; return lastFragmentEntity !== undefined && (lastFragmentEntity.buffered || isPartial(lastFragmentEntity)); } getState(fragment) { const fragKey = getFragmentKey(fragment); const fragmentEntity = this.fragments[fragKey]; if (fragmentEntity) { if (!fragmentEntity.buffered) { return FragmentState.APPENDING; } else if (isPartial(fragmentEntity)) { return FragmentState.PARTIAL; } else { return FragmentState.OK; } } return FragmentState.NOT_LOADED; } isTimeBuffered(startPTS, endPTS, timeRange) { let startTime; let endTime; for (let i = 0; i < timeRange.length; i++) { startTime = timeRange.start(i) - this.bufferPadding; endTime = timeRange.end(i) + this.bufferPadding; if (startPTS >= startTime && endPTS <= endTime) { return true; } if (endPTS <= startTime) { // No need to check the rest of the timeRange as it is in order return false; } } return false; } onFragLoaded(event, data) { const { frag, part } = data; // don't track initsegment (for which sn is not a number) // don't track frags used for bitrateTest, they're irrelevant. if (frag.sn === 'initSegment' || frag.bitrateTest) { return; } // Fragment entity `loaded` FragLoadedData is null when loading parts const loaded = part ? null : data; const fragKey = getFragmentKey(frag); this.fragments[fragKey] = { body: frag, appendedPTS: null, loaded, buffered: false, range: Object.create(null) }; } onBufferAppended(event, data) { const { frag, part, timeRanges } = data; if (frag.sn === 'initSegment') { return; } const playlistType = frag.type; if (part) { let activeParts = this.activePartLists[playlistType]; if (!activeParts) { this.activePartLists[playlistType] = activeParts = []; } activeParts.push(part); } // Store the latest timeRanges loaded in the buffer this.timeRanges = timeRanges; Object.keys(timeRanges).forEach(elementaryStream => { const timeRange = timeRanges[elementaryStream]; this.detectEvictedFragments(elementaryStream, timeRange, playlistType, part); }); } onFragBuffered(event, data) { this.detectPartialFragments(data); } hasFragment(fragment) { const fragKey = getFragmentKey(fragment); return !!this.fragments[fragKey]; } hasParts(type) { var _this$activePartLists; return !!((_this$activePartLists = this.activePartLists[type]) != null && _this$activePartLists.length); } removeFragmentsInRange(start, end, playlistType, withGapOnly, unbufferedOnly) { if (withGapOnly && !this.hasGaps) { return; } Object.keys(this.fragments).forEach(key => { const fragmentEntity = this.fragments[key]; if (!fragmentEntity) { return; } const frag = fragmentEntity.body; if (frag.type !== playlistType || withGapOnly && !frag.gap) { return; } if (frag.start < end && frag.end > start && (fragmentEntity.buffered || unbufferedOnly)) { this.removeFragment(frag); } }); } removeFragment(fragment) { const fragKey = getFragmentKey(fragment); fragment.stats.loaded = 0; fragment.clearElementaryStreamInfo(); const activeParts = this.activePartLists[fragment.type]; if (activeParts) { const snToRemove = fragment.sn; this.activePartLists[fragment.type] = activeParts.filter(part => part.fragment.sn !== snToRemove); } delete this.fragments[fragKey]; if (fragment.endList) { delete this.endListFragments[fragment.type]; } } removeAllFragments() { this.fragments = Object.create(null); this.endListFragments = Object.create(null); this.activePartLists = Object.create(null); this.hasGaps = false; } } function isPartial(fragmentEntity) { var _fragmentEntity$range, _fragmentEntity$range2, _fragmentEntity$range3; return fragmentEntity.buffered && (fragmentEntity.body.gap || ((_fragmentEntity$range = fragmentEntity.range.video) == null ? void 0 : _fragmentEntity$range.partial) || ((_fragmentEntity$range2 = fragmentEntity.range.audio) == null ? void 0 : _fragmentEntity$range2.partial) || ((_fragmentEntity$range3 = fragmentEntity.range.audiovideo) == null ? void 0 : _fragmentEntity$range3.partial)); } function getFragmentKey(fragment) { return `${fragment.type}_${fragment.level}_${fragment.sn}`; } const MIN_CHUNK_SIZE = Math.pow(2, 17); // 128kb class FragmentLoader { constructor(config) { this.config = void 0; this.loader = null; this.partLoadTimeout = -1; this.config = config; } destroy() { if (this.loader) { this.loader.destroy(); this.loader = null; } } abort() { if (this.loader) { // Abort the loader for current fragment. Only one may load at any given time this.loader.abort(); } } load(frag, onProgress) { const url = frag.url; if (!url) { return Promise.reject(new LoadError({ type: ErrorTypes.NETWORK_ERROR, details: ErrorDetails.FRAG_LOAD_ERROR, fatal: false, frag, error: new Error(`Fragment does not have a ${url ? 'part list' : 'url'}`), networkDetails: null })); } this.abort(); const config = this.config; const FragmentILoader = config.fLoader; const DefaultILoader = config.loader; return new Promise((resolve, reject) => { if (this.loader) { this.loader.destroy(); } if (frag.gap) { if (frag.tagList.some(tags => tags[0] === 'GAP')) { reject(createGapLoadError(frag)); return; } else { // Reset temporary treatment as GAP tag frag.gap = false; } } const loader = this.loader = frag.loader = FragmentILoader ? new FragmentILoader(config) : new DefaultILoader(config); const loaderContext = createLoaderContext(frag); const loadPolicy = getLoaderConfigWithoutReties(config.fragLoadPolicy.default); const loaderConfig = { loadPolicy, timeout: loadPolicy.maxLoadTimeMs, maxRetry: 0, retryDelay: 0, maxRetryDelay: 0, highWaterMark: frag.sn === 'initSegment' ? Infinity : MIN_CHUNK_SIZE }; // Assign frag stats to the loader's stats reference frag.stats = loader.stats; loader.load(loaderContext, loaderConfig, { onSuccess: (response, stats, context, networkDetails) => { this.resetLoader(frag, loader); let payload = response.data; if (context.resetIV && frag.decryptdata) { frag.decryptdata.iv = new Uint8Array(payload.slice(0, 16)); payload = payload.slice(16); } resolve({ frag, part: null, payload, networkDetails }); }, onError: (response, context, networkDetails, stats) => { this.resetLoader(frag, loader); reject(new LoadError({ type: ErrorTypes.NETWORK_ERROR, details: ErrorDetails.FRAG_LOAD_ERROR, fatal: false, frag, response: _objectSpread2({ url, data: undefined }, response), error: new Error(`HTTP Error ${response.code} ${response.text}`), networkDetails, stats })); }, onAbort: (stats, context, networkDetails) => { this.resetLoader(frag, loader); reject(new LoadError({ type: ErrorTypes.NETWORK_ERROR, details: ErrorDetails.INTERNAL_ABORTED, fatal: false, frag, error: new Error('Aborted'), networkDetails, stats })); }, onTimeout: (stats, context, networkDetails) => { this.resetLoader(frag, loader); reject(new LoadError({ type: ErrorTypes.NETWORK_ERROR, details: ErrorDetails.FRAG_LOAD_TIMEOUT, fatal: false, frag, error: new Error(`Timeout after ${loaderConfig.timeout}ms`), networkDetails, stats })); }, onProgress: (stats, context, data, networkDetails) => { if (onProgress) { onProgress({ frag, part: null, payload: data, networkDetails }); } } }); }); } loadPart(frag, part, onProgress) { this.abort(); const config = this.config; const FragmentILoader = config.fLoader; const DefaultILoader = config.loader; return new Promise((resolve, reject) => { if (this.loader) { this.loader.destroy(); } if (frag.gap || part.gap) { reject(createGapLoadError(frag, part)); return; } const loader = this.loader = frag.loader = FragmentILoader ? new FragmentILoader(config) : new DefaultILoader(config); const loaderContext = createLoaderContext(frag, part); // Should we define another load policy for parts? const loadPolicy = getLoaderConfigWithoutReties(config.fragLoadPolicy.default); const loaderConfig = { loadPolicy, timeout: loadPolicy.maxLoadTimeMs, maxRetry: 0, retryDelay: 0, maxRetryDelay: 0, highWaterMark: MIN_CHUNK_SIZE }; // Assign part stats to the loader's stats reference part.stats = loader.stats; loader.load(loaderContext, loaderConfig, { onSuccess: (response, stats, context, networkDetails) => { this.resetLoader(frag, loader); this.updateStatsFromPart(frag, part); const partLoadedData = { frag, part, payload: response.data, networkDetails }; onProgress(partLoadedData); resolve(partLoadedData); }, onError: (response, context, networkDetails, stats) => { this.resetLoader(frag, loader); reject(new LoadError({ type: ErrorTypes.NETWORK_ERROR, details: ErrorDetails.FRAG_LOAD_ERROR, fatal: false, frag, part, response: _objectSpread2({ url: loaderContext.url, data: undefined }, response), error: new Error(`HTTP Error ${response.code} ${response.text}`), networkDetails, stats })); }, onAbort: (stats, context, networkDetails) => { frag.stats.aborted = part.stats.aborted; this.resetLoader(frag, loader); reject(new LoadError({ type: ErrorTypes.NETWORK_ERROR, details: ErrorDetails.INTERNAL_ABORTED, fatal: false, frag, part, error: new Error('Aborted'), networkDetails, stats })); }, onTimeout: (stats, context, networkDetails) => { this.resetLoader(frag, loader); reject(new LoadError({ type: ErrorTypes.NETWORK_ERROR, details: ErrorDetails.FRAG_LOAD_TIMEOUT, fatal: false, frag, part, error: new Error(`Timeout after ${loaderConfig.timeout}ms`), networkDetails, stats })); } }); }); } updateStatsFromPart(frag, part) { const fragStats = frag.stats; const partStats = part.stats; const partTotal = partStats.total; fragStats.loaded += partStats.loaded; if (partTotal) { const estTotalParts = Math.round(frag.duration / part.duration); const estLoadedParts = Math.min(Math.round(fragStats.loaded / partTotal), estTotalParts); const estRemainingParts = estTotalParts - estLoadedParts; const estRemainingBytes = estRemainingParts * Math.round(fragStats.loaded / estLoadedParts); fragStats.total = fragStats.loaded + estRemainingBytes; } else { fragStats.total = Math.max(fragStats.loaded, fragStats.total); } const fragLoading = fragStats.loading; const partLoading = partStats.loading; if (fragLoading.start) { // add to fragment loader latency fragLoading.first += partLoading.first - partLoading.start; } else { fragLoading.start = partLoading.start; fragLoading.first = partLoading.first; } fragLoading.end = partLoading.end; } resetLoader(frag, loader) { frag.loader = null; if (this.loader === loader) { self.clearTimeout(this.partLoadTimeout); this.loader = null; } loader.destroy(); } } function createLoaderContext(frag, part = null) { const segment = part || frag; const loaderContext = { frag, part, responseType: 'arraybuffer', url: segment.url, headers: {}, rangeStart: 0, rangeEnd: 0 }; const start = segment.byteRangeStartOffset; const end = segment.byteRangeEndOffset; if (isFiniteNumber(start) && isFiniteNumber(end)) { var _frag$decryptdata; let byteRangeStart = start; let byteRangeEnd = end; if (frag.sn === 'initSegment' && isMethodFullSegmentAesCbc((_frag$decryptdata = frag.decryptdata) == null ? void 0 : _frag$decryptdata.method)) { // MAP segment encrypted with method 'AES-128' or 'AES-256' (cbc), when served with HTTP Range, // has the unencrypted size specified in the range. // Ref: https://tools.ietf.org/html/draft-pantos-hls-rfc8216bis-08#section-6.3.6 const fragmentLen = end - start; if (fragmentLen % 16) { byteRangeEnd = end + (16 - fragmentLen % 16); } if (start !== 0) { loaderContext.resetIV = true; byteRangeStart = start - 16; } } loaderContext.rangeStart = byteRangeStart; loaderContext.rangeEnd = byteRangeEnd; } return loaderContext; } function createGapLoadError(frag, part) { const error = new Error(`GAP ${frag.gap ? 'tag' : 'attribute'} found`); const errorData = { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_GAP, fatal: false, frag, error, networkDetails: null }; if (part) { errorData.part = part; } (part ? part : frag).stats.aborted = true; return new LoadError(errorData); } function isMethodFullSegmentAesCbc(method) { return method === 'AES-128' || method === 'AES-256'; } class LoadError extends Error { constructor(data) { super(data.error.message); this.data = void 0; this.data = data; } } class KeyLoader { constructor(config) { this.config = void 0; this.keyUriToKeyInfo = {}; this.emeController = null; this.config = config; } abort(type) { for (const uri in this.keyUriToKeyInfo) { const loader = this.keyUriToKeyInfo[uri].loader; if (loader) { var _loader$context; if (type && type !== ((_loader$context = loader.context) == null ? void 0 : _loader$context.frag.type)) { return; } loader.abort(); } } } detach() { for (const uri in this.keyUriToKeyInfo) { const keyInfo = this.keyUriToKeyInfo[uri]; // Remove cached EME keys on detach if (keyInfo.mediaKeySessionContext || keyInfo.decryptdata.isCommonEncryption) { delete this.keyUriToKeyInfo[uri]; } } } destroy() { this.detach(); for (const uri in this.keyUriToKeyInfo) { const loader = this.keyUriToKeyInfo[uri].loader; if (loader) { loader.destroy(); } } this.keyUriToKeyInfo = {}; } createKeyLoadError(frag, details = ErrorDetails.KEY_LOAD_ERROR, error, networkDetails, response) { return new LoadError({ type: ErrorTypes.NETWORK_ERROR, details, fatal: false, frag, response, error, networkDetails }); } loadClear(loadingFrag, encryptedFragments) { if (this.emeController && this.config.emeEnabled) { // access key-system with nearest key on start (loaidng frag is unencrypted) const { sn, cc } = loadingFrag; for (let i = 0; i < encryptedFragments.length; i++) { const frag = encryptedFragments[i]; if (cc <= frag.cc && (sn === 'initSegment' || frag.sn === 'initSegment' || sn < frag.sn)) { this.emeController.selectKeySystemFormat(frag).then(keySystemFormat => { frag.setKeyFormat(keySystemFormat); }); break; } } } } load(frag) { if (!frag.decryptdata && frag.encrypted && this.emeController) { // Multiple keys, but none selected, resolve in eme-controller return this.emeController.selectKeySystemFormat(frag).then(keySystemFormat => { return this.loadInternal(frag, keySystemFormat); }); } return this.loadInternal(frag); } loadInternal(frag, keySystemFormat) { var _keyInfo, _keyInfo2; if (keySystemFormat) { frag.setKeyFormat(keySystemFormat); } const decryptdata = frag.decryptdata; if (!decryptdata) { const error = new Error(keySystemFormat ? `Expected frag.decryptdata to be defined after setting format ${keySystemFormat}` : 'Missing decryption data on fragment in onKeyLoading'); return Promise.reject(this.createKeyLoadError(frag, ErrorDetails.KEY_LOAD_ERROR, error)); } const uri = decryptdata.uri; if (!uri) { return Promise.reject(this.createKeyLoadError(frag, ErrorDetails.KEY_LOAD_ERROR, new Error(`Invalid key URI: "${uri}"`))); } let keyInfo = this.keyUriToKeyInfo[uri]; if ((_keyInfo = keyInfo) != null && _keyInfo.decryptdata.key) { decryptdata.key = keyInfo.decryptdata.key; return Promise.resolve({ frag, keyInfo }); } // Return key load promise as long as it does not have a mediakey session with an unusable key status if ((_keyInfo2 = keyInfo) != null && _keyInfo2.keyLoadPromise) { var _keyInfo$mediaKeySess; switch ((_keyInfo$mediaKeySess = keyInfo.mediaKeySessionContext) == null ? void 0 : _keyInfo$mediaKeySess.keyStatus) { case undefined: case 'status-pending': case 'usable': case 'usable-in-future': return keyInfo.keyLoadPromise.then(keyLoadedData => { // Return the correct fragment with updated decryptdata key and loaded keyInfo decryptdata.key = keyLoadedData.keyInfo.decryptdata.key; return { frag, keyInfo }; }); } // If we have a key session and status and it is not pending or usable, continue // This will go back to the eme-controller for expired keys to get a new keyLoadPromise } // Load the key or return the loading promise keyInfo = this.keyUriToKeyInfo[uri] = { decryptdata, keyLoadPromise: null, loader: null, mediaKeySessionContext: null }; switch (decryptdata.method) { case 'ISO-23001-7': case 'SAMPLE-AES': case 'SAMPLE-AES-CENC': case 'SAMPLE-AES-CTR': if (decryptdata.keyFormat === 'identity') { // loadKeyHTTP handles http(s) and data URLs return this.loadKeyHTTP(keyInfo, frag); } return this.loadKeyEME(keyInfo, frag); case 'AES-128': case 'AES-256': case 'AES-256-CTR': return this.loadKeyHTTP(keyInfo, frag); default: return Promise.reject(this.createKeyLoadError(frag, ErrorDetails.KEY_LOAD_ERROR, new Error(`Key supplied with unsupported METHOD: "${decryptdata.method}"`))); } } loadKeyEME(keyInfo, frag) { const keyLoadedData = { frag, keyInfo }; if (this.emeController && this.config.emeEnabled) { const keySessionContextPromise = this.emeController.loadKey(keyLoadedData); if (keySessionContextPromise) { return (keyInfo.keyLoadPromise = keySessionContextPromise.then(keySessionContext => { keyInfo.mediaKeySessionContext = keySessionContext; return keyLoadedData; })).catch(error => { // Remove promise for license renewal or retry keyInfo.keyLoadPromise = null; throw error; }); } } return Promise.resolve(keyLoadedData); } loadKeyHTTP(keyInfo, frag) { const config = this.config; const Loader = config.loader; const keyLoader = new Loader(config); frag.keyLoader = keyInfo.loader = keyLoader; return keyInfo.keyLoadPromise = new Promise((resolve, reject) => { const loaderContext = { keyInfo, frag, responseType: 'arraybuffer', url: keyInfo.decryptdata.uri }; // maxRetry is 0 so that instead of retrying the same key on the same variant multiple times, // key-loader will trigger an error and rely on stream-controller to handle retry logic. // this will also align retry logic with fragment-loader const loadPolicy = config.keyLoadPolicy.default; const loaderConfig = { loadPolicy, timeout: loadPolicy.maxLoadTimeMs, maxRetry: 0, retryDelay: 0, maxRetryDelay: 0 }; const loaderCallbacks = { onSuccess: (response, stats, context, networkDetails) => { const { frag, keyInfo, url: uri } = context; if (!frag.decryptdata || keyInfo !== this.keyUriToKeyInfo[uri]) { return reject(this.createKeyLoadError(frag, ErrorDetails.KEY_LOAD_ERROR, new Error('after key load, decryptdata unset or changed'), networkDetails)); } keyInfo.decryptdata.key = frag.decryptdata.key = new Uint8Array(response.data); // detach fragment key loader on load success frag.keyLoader = null; keyInfo.loader = null; resolve({ frag, keyInfo }); }, onError: (response, context, networkDetails, stats) => { this.resetLoader(context); reject(this.createKeyLoadError(frag, ErrorDetails.KEY_LOAD_ERROR, new Error(`HTTP Error ${response.code} loading key ${response.text}`), networkDetails, _objectSpread2({ url: loaderContext.url, data: undefined }, response))); }, onTimeout: (stats, context, networkDetails) => { this.resetLoader(context); reject(this.createKeyLoadError(frag, ErrorDetails.KEY_LOAD_TIMEOUT, new Error('key loading timed out'), networkDetails)); }, onAbort: (stats, context, networkDetails) => { this.resetLoader(context); reject(this.createKeyLoadError(frag, ErrorDetails.INTERNAL_ABORTED, new Error('key loading aborted'), networkDetails)); } }; keyLoader.load(loaderContext, loaderConfig, loaderCallbacks); }); } resetLoader(context) { const { frag, keyInfo, url: uri } = context; const loader = keyInfo.loader; if (frag.keyLoader === loader) { frag.keyLoader = null; keyInfo.loader = null; } delete this.keyUriToKeyInfo[uri]; if (loader) { loader.destroy(); } } } /** * @ignore * Sub-class specialization of EventHandler base class. * * TaskLoop allows to schedule a task function being called (optionnaly repeatedly) on the main loop, * scheduled asynchroneously, avoiding recursive calls in the same tick. * * The task itself is implemented in `doTick`. It can be requested and called for single execution * using the `tick` method. * * It will be assured that the task execution method (`tick`) only gets called once per main loop "tick", * no matter how often it gets requested for execution. Execution in further ticks will be scheduled accordingly. * * If further execution requests have already been scheduled on the next tick, it can be checked with `hasNextTick`, * and cancelled with `clearNextTick`. * * The task can be scheduled as an interval repeatedly with a period as parameter (see `setInterval`, `clearInterval`). * * Sub-classes need to implement the `doTick` method which will effectively have the task execution routine. * * Further explanations: * * The baseclass has a `tick` method that will schedule the doTick call. It may be called synchroneously * only for a stack-depth of one. On re-entrant calls, sub-sequent calls are scheduled for next main loop ticks. * * When the task execution (`tick` method) is called in re-entrant way this is detected and * we are limiting the task execution per call stack to exactly one, but scheduling/post-poning further * task processing on the next main loop iteration (also known as "next tick" in the Node/JS runtime lingo). */ class TaskLoop extends Logger { constructor(label, logger) { super(label, logger); this._boundTick = void 0; this._tickTimer = null; this._tickInterval = null; this._tickCallCount = 0; this._boundTick = this.tick.bind(this); } destroy() { this.onHandlerDestroying(); this.onHandlerDestroyed(); } onHandlerDestroying() { // clear all timers before unregistering from event bus this.clearNextTick(); this.clearInterval(); } onHandlerDestroyed() {} hasInterval() { return !!this._tickInterval; } hasNextTick() { return !!this._tickTimer; } /** * @param millis - Interval time (ms) * @eturns True when interval has been scheduled, false when already scheduled (no effect) */ setInterval(millis) { if (!this._tickInterval) { this._tickCallCount = 0; this._tickInterval = self.setInterval(this._boundTick, millis); return true; } return false; } /** * @returns True when interval was cleared, false when none was set (no effect) */ clearInterval() { if (this._tickInterval) { self.clearInterval(this._tickInterval); this._tickInterval = null; return true; } return false; } /** * @returns True when timeout was cleared, false when none was set (no effect) */ clearNextTick() { if (this._tickTimer) { self.clearTimeout(this._tickTimer); this._tickTimer = null; return true; } return false; } /** * Will call the subclass doTick implementation in this main loop tick * or in the next one (via setTimeout(,0)) in case it has already been called * in this tick (in case this is a re-entrant call). */ tick() { this._tickCallCount++; if (this._tickCallCount === 1) { this.doTick(); // re-entrant call to tick from previous doTick call stack // -> schedule a call on the next main loop iteration to process this task processing request if (this._tickCallCount > 1) { // make sure only one timer exists at any time at max this.tickImmediate(); } this._tickCallCount = 0; } } tickImmediate() { this.clearNextTick(); this._tickTimer = self.setTimeout(this._boundTick, 0); } /** * For subclass to implement task logic * @abstract */ doTick() {} } class ChunkMetadata { constructor(level, sn, id, size = 0, part = -1, partial = false) { this.level = void 0; this.sn = void 0; this.part = void 0; this.id = void 0; this.size = void 0; this.partial = void 0; this.transmuxing = getNewPerformanceTiming(); this.buffering = { audio: getNewPerformanceTiming(), video: getNewPerformanceTiming(), audiovideo: getNewPerformanceTiming() }; this.level = level; this.sn = sn; this.id = id; this.size = size; this.part = part; this.partial = partial; } } function getNewPerformanceTiming() { return { start: 0, executeStart: 0, executeEnd: 0, end: 0 }; } function findFirstFragWithCC(fragments, cc) { for (let i = 0, len = fragments.length; i < len; i++) { var _fragments$i; if (((_fragments$i = fragments[i]) == null ? void 0 : _fragments$i.cc) === cc) { return fragments[i]; } } return null; } function shouldAlignOnDiscontinuities(lastFrag, switchDetails, details) { if (switchDetails) { if (details.endCC > details.startCC || lastFrag && lastFrag.cc < details.startCC) { return true; } } return false; } // Find the first frag in the previous level which matches the CC of the first frag of the new level function findDiscontinuousReferenceFrag(prevDetails, curDetails) { const prevFrags = prevDetails.fragments; const curFrags = curDetails.fragments; if (!curFrags.length || !prevFrags.length) { logger.log('No fragments to align'); return; } const prevStartFrag = findFirstFragWithCC(prevFrags, curFrags[0].cc); if (!prevStartFrag || prevStartFrag && !prevStartFrag.startPTS) { logger.log('No frag in previous level to align on'); return; } return prevStartFrag; } function adjustFragmentStart(frag, sliding) { if (frag) { const start = frag.start + sliding; frag.start = frag.startPTS = start; frag.endPTS = start + frag.duration; } } function adjustSlidingStart(sliding, details) { // Update segments const fragments = details.fragments; for (let i = 0, len = fragments.length; i < len; i++) { adjustFragmentStart(fragments[i], sliding); } // Update LL-HLS parts at the end of the playlist if (details.fragmentHint) { adjustFragmentStart(details.fragmentHint, sliding); } details.alignedSliding = true; } /** * Using the parameters of the last level, this function computes PTS' of the new fragments so that they form a * contiguous stream with the last fragments. * The PTS of a fragment lets Hls.js know where it fits into a stream - by knowing every PTS, we know which fragment to * download at any given time. PTS is normally computed when the fragment is demuxed, so taking this step saves us time * and an extra download. * @param lastFrag * @param lastLevel * @param details */ function alignStream(lastFrag, switchDetails, details) { if (!switchDetails) { return; } alignDiscontinuities(lastFrag, details, switchDetails); if (!details.alignedSliding && switchDetails) { // If the PTS wasn't figured out via discontinuity sequence that means there was no CC increase within the level. // Aligning via Program Date Time should therefore be reliable, since PDT should be the same within the same // discontinuity sequence. alignMediaPlaylistByPDT(details, switchDetails); } if (!details.alignedSliding && switchDetails && !details.skippedSegments) { // Try to align on sn so that we pick a better start fragment. // Do not perform this on playlists with delta updates as this is only to align levels on switch // and adjustSliding only adjusts fragments after skippedSegments. adjustSliding(switchDetails, details); } } /** * Computes the PTS if a new level's fragments using the PTS of a fragment in the last level which shares the same * discontinuity sequence. * @param lastFrag - The last Fragment which shares the same discontinuity sequence * @param lastLevel - The details of the last loaded level * @param details - The details of the new level */ function alignDiscontinuities(lastFrag, details, switchDetails) { if (shouldAlignOnDiscontinuities(lastFrag, switchDetails, details)) { const referenceFrag = findDiscontinuousReferenceFrag(switchDetails, details); if (referenceFrag && isFiniteNumber(referenceFrag.start)) { logger.log(`Adjusting PTS using last level due to CC increase within current level ${details.url}`); adjustSlidingStart(referenceFrag.start, details); } } } /** * Ensures appropriate time-alignment between renditions based on PDT. * This function assumes the timelines represented in `refDetails` are accurate, including the PDTs * for the last discontinuity sequence number shared by both playlists when present, * and uses the "wallclock"/PDT timeline as a cross-reference to `details`, adjusting the presentation * times/timelines of `details` accordingly. * Given the asynchronous nature of fetches and initial loads of live `main` and audio/subtitle tracks, * the primary purpose of this function is to ensure the "local timelines" of audio/subtitle tracks * are aligned to the main/video timeline, using PDT as the cross-reference/"anchor" that should * be consistent across playlists, per the HLS spec. * @param details - The details of the rendition you'd like to time-align (e.g. an audio rendition). * @param refDetails - The details of the reference rendition with start and PDT times for alignment. */ function alignMediaPlaylistByPDT(details, refDetails) { if (!details.hasProgramDateTime || !refDetails.hasProgramDateTime) { return; } const fragments = details.fragments; const refFragments = refDetails.fragments; if (!fragments.length || !refFragments.length) { return; } // Calculate a delta to apply to all fragments according to the delta in PDT times and start times // of a fragment in the reference details, and a fragment in the target details of the same discontinuity. // If a fragment of the same discontinuity was not found use the middle fragment of both. let refFrag; let frag; const targetCC = Math.min(refDetails.endCC, details.endCC); if (refDetails.startCC < targetCC && details.startCC < targetCC) { refFrag = findFirstFragWithCC(refFragments, targetCC); frag = findFirstFragWithCC(fragments, targetCC); } if (!refFrag || !frag) { refFrag = refFragments[Math.floor(refFragments.length / 2)]; frag = findFirstFragWithCC(fragments, refFrag.cc) || fragments[Math.floor(fragments.length / 2)]; } const refPDT = refFrag.programDateTime; const targetPDT = frag.programDateTime; if (!refPDT || !targetPDT) { return; } const delta = (targetPDT - refPDT) / 1000 - (frag.start - refFrag.start); adjustSlidingStart(delta, details); } class AESCrypto { constructor(subtle, iv, aesMode) { this.subtle = void 0; this.aesIV = void 0; this.aesMode = void 0; this.subtle = subtle; this.aesIV = iv; this.aesMode = aesMode; } decrypt(data, key) { switch (this.aesMode) { case DecrypterAesMode.cbc: return this.subtle.decrypt({ name: 'AES-CBC', iv: this.aesIV }, key, data); case DecrypterAesMode.ctr: return this.subtle.decrypt({ name: 'AES-CTR', counter: this.aesIV, length: 64 }, //64 : NIST SP800-38A standard suggests that the counter should occupy half of the counter block key, data); default: throw new Error(`[AESCrypto] invalid aes mode ${this.aesMode}`); } } } class FastAESKey { constructor(subtle, key, aesMode) { this.subtle = void 0; this.key = void 0; this.aesMode = void 0; this.subtle = subtle; this.key = key; this.aesMode = aesMode; } expandKey() { const subtleAlgoName = getSubtleAlgoName(this.aesMode); return this.subtle.importKey('raw', this.key, { name: subtleAlgoName }, false, ['encrypt', 'decrypt']); } } function getSubtleAlgoName(aesMode) { switch (aesMode) { case DecrypterAesMode.cbc: return 'AES-CBC'; case DecrypterAesMode.ctr: return 'AES-CTR'; default: throw new Error(`[FastAESKey] invalid aes mode ${aesMode}`); } } // PKCS7 function removePadding(array) { const outputBytes = array.byteLength; const paddingBytes = outputBytes && new DataView(array.buffer).getUint8(outputBytes - 1); if (paddingBytes) { return sliceUint8(array, 0, outputBytes - paddingBytes); } return array; } class AESDecryptor { constructor() { this.rcon = [0x0, 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36]; this.subMix = [new Uint32Array(256), new Uint32Array(256), new Uint32Array(256), new Uint32Array(256)]; this.invSubMix = [new Uint32Array(256), new Uint32Array(256), new Uint32Array(256), new Uint32Array(256)]; this.sBox = new Uint32Array(256); this.invSBox = new Uint32Array(256); this.key = new Uint32Array(0); this.ksRows = 0; this.keySize = 0; this.keySchedule = void 0; this.invKeySchedule = void 0; this.initTable(); } // Using view.getUint32() also swaps the byte order. uint8ArrayToUint32Array_(arrayBuffer) { const view = new DataView(arrayBuffer); const newArray = new Uint32Array(4); for (let i = 0; i < 4; i++) { newArray[i] = view.getUint32(i * 4); } return newArray; } initTable() { const sBox = this.sBox; const invSBox = this.invSBox; const subMix = this.subMix; const subMix0 = subMix[0]; const subMix1 = subMix[1]; const subMix2 = subMix[2]; const subMix3 = subMix[3]; const invSubMix = this.invSubMix; const invSubMix0 = invSubMix[0]; const invSubMix1 = invSubMix[1]; const invSubMix2 = invSubMix[2]; const invSubMix3 = invSubMix[3]; const d = new Uint32Array(256); let x = 0; let xi = 0; let i = 0; for (i = 0; i < 256; i++) { if (i < 128) { d[i] = i << 1; } else { d[i] = i << 1 ^ 0x11b; } } for (i = 0; i < 256; i++) { let sx = xi ^ xi << 1 ^ xi << 2 ^ xi << 3 ^ xi << 4; sx = sx >>> 8 ^ sx & 0xff ^ 0x63; sBox[x] = sx; invSBox[sx] = x; // Compute multiplication const x2 = d[x]; const x4 = d[x2]; const x8 = d[x4]; // Compute sub/invSub bytes, mix columns tables let t = d[sx] * 0x101 ^ sx * 0x1010100; subMix0[x] = t << 24 | t >>> 8; subMix1[x] = t << 16 | t >>> 16; subMix2[x] = t << 8 | t >>> 24; subMix3[x] = t; // Compute inv sub bytes, inv mix columns tables t = x8 * 0x1010101 ^ x4 * 0x10001 ^ x2 * 0x101 ^ x * 0x1010100; invSubMix0[sx] = t << 24 | t >>> 8; invSubMix1[sx] = t << 16 | t >>> 16; invSubMix2[sx] = t << 8 | t >>> 24; invSubMix3[sx] = t; // Compute next counter if (!x) { x = xi = 1; } else { x = x2 ^ d[d[d[x8 ^ x2]]]; xi ^= d[d[xi]]; } } } expandKey(keyBuffer) { // convert keyBuffer to Uint32Array const key = this.uint8ArrayToUint32Array_(keyBuffer); let sameKey = true; let offset = 0; while (offset < key.length && sameKey) { sameKey = key[offset] === this.key[offset]; offset++; } if (sameKey) { return; } this.key = key; const keySize = this.keySize = key.length; if (keySize !== 4 && keySize !== 6 && keySize !== 8) { throw new Error('Invalid aes key size=' + keySize); } const ksRows = this.ksRows = (keySize + 6 + 1) * 4; let ksRow; let invKsRow; const keySchedule = this.keySchedule = new Uint32Array(ksRows); const invKeySchedule = this.invKeySchedule = new Uint32Array(ksRows); const sbox = this.sBox; const rcon = this.rcon; const invSubMix = this.invSubMix; const invSubMix0 = invSubMix[0]; const invSubMix1 = invSubMix[1]; const invSubMix2 = invSubMix[2]; const invSubMix3 = invSubMix[3]; let prev; let t; for (ksRow = 0; ksRow < ksRows; ksRow++) { if (ksRow < keySize) { prev = keySchedule[ksRow] = key[ksRow]; continue; } t = prev; if (ksRow % keySize === 0) { // Rot word t = t << 8 | t >>> 24; // Sub word t = sbox[t >>> 24] << 24 | sbox[t >>> 16 & 0xff] << 16 | sbox[t >>> 8 & 0xff] << 8 | sbox[t & 0xff]; // Mix Rcon t ^= rcon[ksRow / keySize | 0] << 24; } else if (keySize > 6 && ksRow % keySize === 4) { // Sub word t = sbox[t >>> 24] << 24 | sbox[t >>> 16 & 0xff] << 16 | sbox[t >>> 8 & 0xff] << 8 | sbox[t & 0xff]; } keySchedule[ksRow] = prev = (keySchedule[ksRow - keySize] ^ t) >>> 0; } for (invKsRow = 0; invKsRow < ksRows; invKsRow++) { ksRow = ksRows - invKsRow; if (invKsRow & 3) { t = keySchedule[ksRow]; } else { t = keySchedule[ksRow - 4]; } if (invKsRow < 4 || ksRow <= 4) { invKeySchedule[invKsRow] = t; } else { invKeySchedule[invKsRow] = invSubMix0[sbox[t >>> 24]] ^ invSubMix1[sbox[t >>> 16 & 0xff]] ^ invSubMix2[sbox[t >>> 8 & 0xff]] ^ invSubMix3[sbox[t & 0xff]]; } invKeySchedule[invKsRow] = invKeySchedule[invKsRow] >>> 0; } } // Adding this as a method greatly improves performance. networkToHostOrderSwap(word) { return word << 24 | (word & 0xff00) << 8 | (word & 0xff0000) >> 8 | word >>> 24; } decrypt(inputArrayBuffer, offset, aesIV) { const nRounds = this.keySize + 6; const invKeySchedule = this.invKeySchedule; const invSBOX = this.invSBox; const invSubMix = this.invSubMix; const invSubMix0 = invSubMix[0]; const invSubMix1 = invSubMix[1]; const invSubMix2 = invSubMix[2]; const invSubMix3 = invSubMix[3]; const initVector = this.uint8ArrayToUint32Array_(aesIV); let initVector0 = initVector[0]; let initVector1 = initVector[1]; let initVector2 = initVector[2]; let initVector3 = initVector[3]; const inputInt32 = new Int32Array(inputArrayBuffer); const outputInt32 = new Int32Array(inputInt32.length); let t0, t1, t2, t3; let s0, s1, s2, s3; let inputWords0, inputWords1, inputWords2, inputWords3; let ksRow, i; const swapWord = this.networkToHostOrderSwap; while (offset < inputInt32.length) { inputWords0 = swapWord(inputInt32[offset]); inputWords1 = swapWord(inputInt32[offset + 1]); inputWords2 = swapWord(inputInt32[offset + 2]); inputWords3 = swapWord(inputInt32[offset + 3]); s0 = inputWords0 ^ invKeySchedule[0]; s1 = inputWords3 ^ invKeySchedule[1]; s2 = inputWords2 ^ invKeySchedule[2]; s3 = inputWords1 ^ invKeySchedule[3]; ksRow = 4; // Iterate through the rounds of decryption for (i = 1; i < nRounds; i++) { t0 = invSubMix0[s0 >>> 24] ^ invSubMix1[s1 >> 16 & 0xff] ^ invSubMix2[s2 >> 8 & 0xff] ^ invSubMix3[s3 & 0xff] ^ invKeySchedule[ksRow]; t1 = invSubMix0[s1 >>> 24] ^ invSubMix1[s2 >> 16 & 0xff] ^ invSubMix2[s3 >> 8 & 0xff] ^ invSubMix3[s0 & 0xff] ^ invKeySchedule[ksRow + 1]; t2 = invSubMix0[s2 >>> 24] ^ invSubMix1[s3 >> 16 & 0xff] ^ invSubMix2[s0 >> 8 & 0xff] ^ invSubMix3[s1 & 0xff] ^ invKeySchedule[ksRow + 2]; t3 = invSubMix0[s3 >>> 24] ^ invSubMix1[s0 >> 16 & 0xff] ^ invSubMix2[s1 >> 8 & 0xff] ^ invSubMix3[s2 & 0xff] ^ invKeySchedule[ksRow + 3]; // Update state s0 = t0; s1 = t1; s2 = t2; s3 = t3; ksRow = ksRow + 4; } // Shift rows, sub bytes, add round key t0 = invSBOX[s0 >>> 24] << 24 ^ invSBOX[s1 >> 16 & 0xff] << 16 ^ invSBOX[s2 >> 8 & 0xff] << 8 ^ invSBOX[s3 & 0xff] ^ invKeySchedule[ksRow]; t1 = invSBOX[s1 >>> 24] << 24 ^ invSBOX[s2 >> 16 & 0xff] << 16 ^ invSBOX[s3 >> 8 & 0xff] << 8 ^ invSBOX[s0 & 0xff] ^ invKeySchedule[ksRow + 1]; t2 = invSBOX[s2 >>> 24] << 24 ^ invSBOX[s3 >> 16 & 0xff] << 16 ^ invSBOX[s0 >> 8 & 0xff] << 8 ^ invSBOX[s1 & 0xff] ^ invKeySchedule[ksRow + 2]; t3 = invSBOX[s3 >>> 24] << 24 ^ invSBOX[s0 >> 16 & 0xff] << 16 ^ invSBOX[s1 >> 8 & 0xff] << 8 ^ invSBOX[s2 & 0xff] ^ invKeySchedule[ksRow + 3]; // Write outputInt32[offset] = swapWord(t0 ^ initVector0); outputInt32[offset + 1] = swapWord(t3 ^ initVector1); outputInt32[offset + 2] = swapWord(t2 ^ initVector2); outputInt32[offset + 3] = swapWord(t1 ^ initVector3); // reset initVector to last 4 unsigned int initVector0 = inputWords0; initVector1 = inputWords1; initVector2 = inputWords2; initVector3 = inputWords3; offset = offset + 4; } return outputInt32.buffer; } } const CHUNK_SIZE = 16; // 16 bytes, 128 bits class Decrypter { constructor(config, { removePKCS7Padding = true } = {}) { this.logEnabled = true; this.removePKCS7Padding = void 0; this.subtle = null; this.softwareDecrypter = null; this.key = null; this.fastAesKey = null; this.remainderData = null; this.currentIV = null; this.currentResult = null; this.useSoftware = void 0; this.enableSoftwareAES = void 0; this.enableSoftwareAES = config.enableSoftwareAES; this.removePKCS7Padding = removePKCS7Padding; // built in decryptor expects PKCS7 padding if (removePKCS7Padding) { try { const browserCrypto = self.crypto; if (browserCrypto) { this.subtle = browserCrypto.subtle || browserCrypto.webkitSubtle; } } catch (e) { /* no-op */ } } this.useSoftware = this.subtle === null; } destroy() { this.subtle = null; this.softwareDecrypter = null; this.key = null; this.fastAesKey = null; this.remainderData = null; this.currentIV = null; this.currentResult = null; } isSync() { return this.useSoftware; } flush() { const { currentResult, remainderData } = this; if (!currentResult || remainderData) { this.reset(); return null; } const data = new Uint8Array(currentResult); this.reset(); if (this.removePKCS7Padding) { return removePadding(data); } return data; } reset() { this.currentResult = null; this.currentIV = null; this.remainderData = null; if (this.softwareDecrypter) { this.softwareDecrypter = null; } } decrypt(data, key, iv, aesMode) { if (this.useSoftware) { return new Promise((resolve, reject) => { this.softwareDecrypt(new Uint8Array(data), key, iv, aesMode); const decryptResult = this.flush(); if (decryptResult) { resolve(decryptResult.buffer); } else { reject(new Error('[softwareDecrypt] Failed to decrypt data')); } }); } return this.webCryptoDecrypt(new Uint8Array(data), key, iv, aesMode); } // Software decryption is progressive. Progressive decryption may not return a result on each call. Any cached // data is handled in the flush() call softwareDecrypt(data, key, iv, aesMode) { const { currentIV, currentResult, remainderData } = this; if (aesMode !== DecrypterAesMode.cbc || key.byteLength !== 16) { logger.warn('SoftwareDecrypt: can only handle AES-128-CBC'); return null; } this.logOnce('JS AES decrypt'); // The output is staggered during progressive parsing - the current result is cached, and emitted on the next call // This is done in order to strip PKCS7 padding, which is found at the end of each segment. We only know we've reached // the end on flush(), but by that time we have already received all bytes for the segment. // Progressive decryption does not work with WebCrypto if (remainderData) { data = appendUint8Array(remainderData, data); this.remainderData = null; } // Byte length must be a multiple of 16 (AES-128 = 128 bit blocks = 16 bytes) const currentChunk = this.getValidChunk(data); if (!currentChunk.length) { return null; } if (currentIV) { iv = currentIV; } let softwareDecrypter = this.softwareDecrypter; if (!softwareDecrypter) { softwareDecrypter = this.softwareDecrypter = new AESDecryptor(); } softwareDecrypter.expandKey(key); const result = currentResult; this.currentResult = softwareDecrypter.decrypt(currentChunk.buffer, 0, iv); this.currentIV = sliceUint8(currentChunk, -16).buffer; if (!result) { return null; } return result; } webCryptoDecrypt(data, key, iv, aesMode) { const subtle = this.subtle; if (this.key !== key || !this.fastAesKey) { this.key = key; this.fastAesKey = new FastAESKey(subtle, key, aesMode); } return this.fastAesKey.expandKey().then(aesKey => { // decrypt using web crypto if (!subtle) { return Promise.reject(new Error('web crypto not initialized')); } this.logOnce('WebCrypto AES decrypt'); const crypto = new AESCrypto(subtle, new Uint8Array(iv), aesMode); return crypto.decrypt(data.buffer, aesKey); }).catch(err => { logger.warn(`[decrypter]: WebCrypto Error, disable WebCrypto API, ${err.name}: ${err.message}`); return this.onWebCryptoError(data, key, iv, aesMode); }); } onWebCryptoError(data, key, iv, aesMode) { const enableSoftwareAES = this.enableSoftwareAES; if (enableSoftwareAES) { this.useSoftware = true; this.logEnabled = true; this.softwareDecrypt(data, key, iv, aesMode); const decryptResult = this.flush(); if (decryptResult) { return decryptResult.buffer; } } throw new Error('WebCrypto' + (enableSoftwareAES ? ' and softwareDecrypt' : '') + ': failed to decrypt data'); } getValidChunk(data) { let currentChunk = data; const splitPoint = data.length - data.length % CHUNK_SIZE; if (splitPoint !== data.length) { currentChunk = sliceUint8(data, 0, splitPoint); this.remainderData = sliceUint8(data, splitPoint); } return currentChunk; } logOnce(msg) { if (!this.logEnabled) { return; } logger.log(`[decrypter]: ${msg}`); this.logEnabled = false; } } /** * TimeRanges to string helper */ const TimeRanges = { toString: function (r) { let log = ''; const len = r.length; for (let i = 0; i < len; i++) { log += `[${r.start(i).toFixed(3)}-${r.end(i).toFixed(3)}]`; } return log; } }; const State = { STOPPED: 'STOPPED', IDLE: 'IDLE', KEY_LOADING: 'KEY_LOADING', FRAG_LOADING: 'FRAG_LOADING', FRAG_LOADING_WAITING_RETRY: 'FRAG_LOADING_WAITING_RETRY', WAITING_TRACK: 'WAITING_TRACK', PARSING: 'PARSING', PARSED: 'PARSED', ENDED: 'ENDED', ERROR: 'ERROR', WAITING_INIT_PTS: 'WAITING_INIT_PTS', WAITING_LEVEL: 'WAITING_LEVEL' }; class BaseStreamController extends TaskLoop { constructor(hls, fragmentTracker, keyLoader, logPrefix, playlistType) { super(logPrefix, hls.logger); this.hls = void 0; this.fragPrevious = null; this.fragCurrent = null; this.fragmentTracker = void 0; this.transmuxer = null; this._state = State.STOPPED; this.playlistType = void 0; this.media = null; this.mediaBuffer = null; this.config = void 0; this.bitrateTest = false; this.lastCurrentTime = 0; this.nextLoadPosition = 0; this.startPosition = 0; this.startTimeOffset = null; this.loadedmetadata = false; this.retryDate = 0; this.levels = null; this.fragmentLoader = void 0; this.keyLoader = void 0; this.levelLastLoaded = null; this.startFragRequested = false; this.decrypter = void 0; this.initPTS = []; this.onMediaSeeking = () => { const { config, fragCurrent, media, mediaBuffer, state } = this; const currentTime = media ? media.currentTime : 0; const bufferInfo = BufferHelper.bufferInfo(mediaBuffer ? mediaBuffer : media, currentTime, config.maxBufferHole); this.log(`media seeking to ${isFiniteNumber(currentTime) ? currentTime.toFixed(3) : currentTime}, state: ${state}`); if (this.state === State.ENDED) { this.resetLoadingState(); } else if (fragCurrent) { // Seeking while frag load is in progress const tolerance = config.maxFragLookUpTolerance; const fragStartOffset = fragCurrent.start - tolerance; const fragEndOffset = fragCurrent.start + fragCurrent.duration + tolerance; // if seeking out of buffered range or into new one if (!bufferInfo.len || fragEndOffset < bufferInfo.start || fragStartOffset > bufferInfo.end) { const pastFragment = currentTime > fragEndOffset; // if the seek position is outside the current fragment range if (currentTime < fragStartOffset || pastFragment) { if (pastFragment && fragCurrent.loader) { this.log('seeking outside of buffer while fragment load in progress, cancel fragment load'); fragCurrent.abortRequests(); this.resetLoadingState(); } this.fragPrevious = null; } } } if (media) { // Remove gap fragments this.fragmentTracker.removeFragmentsInRange(currentTime, Infinity, this.playlistType, true); this.lastCurrentTime = currentTime; } // in case seeking occurs although no media buffered, adjust startPosition and nextLoadPosition to seek target if (!this.loadedmetadata && !bufferInfo.len) { this.nextLoadPosition = this.startPosition = currentTime; } // Async tick to speed up processing this.tickImmediate(); }; this.onMediaEnded = () => { // reset startPosition and lastCurrentTime to restart playback @ stream beginning this.startPosition = this.lastCurrentTime = 0; if (this.playlistType === PlaylistLevelType.MAIN) { this.hls.trigger(Events.MEDIA_ENDED, { stalled: false }); } }; this.playlistType = playlistType; this.hls = hls; this.fragmentLoader = new FragmentLoader(hls.config); this.keyLoader = keyLoader; this.fragmentTracker = fragmentTracker; this.config = hls.config; this.decrypter = new Decrypter(hls.config); } registerListeners() { const { hls } = this; hls.on(Events.MEDIA_ATTACHED, this.onMediaAttached, this); hls.on(Events.MEDIA_DETACHING, this.onMediaDetaching, this); hls.on(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.on(Events.MANIFEST_LOADED, this.onManifestLoaded, this); hls.on(Events.ERROR, this.onError, this); } unregisterListeners() { const { hls } = this; hls.off(Events.MEDIA_ATTACHED, this.onMediaAttached, this); hls.off(Events.MEDIA_DETACHING, this.onMediaDetaching, this); hls.off(Events.MANIFEST_LOADING, this.onManifestLoading, this); hls.off(Events.MANIFEST_LOADED, this.onManifestLoaded, this); hls.off(Events.ERROR, this.onError, this); } doTick() { this.onTickEnd(); } onTickEnd() {} // eslint-disable-next-line @typescript-eslint/no-unused-vars startLoad(startPosition) {} stopLoad() { this.fragmentLoader.abort(); this.keyLoader.abort(this.playlistType); const frag = this.fragCurrent; if (frag != null && frag.loader) { frag.abortRequests(); this.fragmentTracker.removeFragment(frag); } this.resetTransmuxer(); this.fragCurrent = null; this.fragPrevious = null; this.clearInterval(); this.clearNextTick(); this.state = State.STOPPED; } _streamEnded(bufferInfo, levelDetails) { // If playlist is live, there is another buffered range after the current range, nothing buffered, media is detached, // of nothing loading/loaded return false if (levelDetails.live || bufferInfo.nextStart || !bufferInfo.end || !this.media) { return false; } const partList = levelDetails.partList; // Since the last part isn't guaranteed to correspond to the last playlist segment for Low-Latency HLS, // check instead if the last part is buffered. if (partList != null && partList.length) { const lastPart = partList[partList.length - 1]; // Checking the midpoint of the part for potential margin of error and related issues. // NOTE: Technically I believe parts could yield content that is < the computed duration (including potential a duration of 0) // and still be spec-compliant, so there may still be edge cases here. Likewise, there could be issues in end of stream // part mismatches for independent audio and video playlists/segments. const lastPartBuffered = BufferHelper.isBuffered(this.media, lastPart.start + lastPart.duration / 2); return lastPartBuffered; } const playlistType = levelDetails.fragments[levelDetails.fragments.length - 1].type; return this.fragmentTracker.isEndListAppended(playlistType); } getLevelDetails() { if (this.levels && this.levelLastLoaded !== null) { var _this$levelLastLoaded; return (_this$levelLastLoaded = this.levelLastLoaded) == null ? void 0 : _this$levelLastLoaded.details; } } onMediaAttached(event, data) { const media = this.media = this.mediaBuffer = data.media; media.addEventListener('seeking', this.onMediaSeeking); media.addEventListener('ended', this.onMediaEnded); const config = this.config; if (this.levels && config.autoStartLoad && this.state === State.STOPPED) { this.startLoad(config.startPosition); } } onMediaDetaching() { const media = this.media; if (media != null && media.ended) { this.log('MSE detaching and video ended, reset startPosition'); this.startPosition = this.lastCurrentTime = 0; } // remove video listeners if (media) { media.removeEventListener('seeking', this.onMediaSeeking); media.removeEventListener('ended', this.onMediaEnded); } if (this.keyLoader) { this.keyLoader.detach(); } this.media = this.mediaBuffer = null; this.loadedmetadata = false; this.fragmentTracker.removeAllFragments(); this.stopLoad(); } onManifestLoading() {} onError(event, data) {} onManifestLoaded(event, data) { this.startTimeOffset = data.startTimeOffset; this.initPTS = []; } onHandlerDestroying() { this.hls.off(Events.MANIFEST_LOADED, this.onManifestLoaded, this); this.stopLoad(); super.onHandlerDestroying(); // @ts-ignore this.hls = this.onMediaSeeking = this.onMediaEnded = null; } onHandlerDestroyed() { this.state = State.STOPPED; if (this.fragmentLoader) { this.fragmentLoader.destroy(); } if (this.keyLoader) { this.keyLoader.destroy(); } if (this.decrypter) { this.decrypter.destroy(); } this.hls = this.log = this.warn = this.decrypter = this.keyLoader = this.fragmentLoader = this.fragmentTracker = null; super.onHandlerDestroyed(); } loadFragment(frag, level, targetBufferTime) { this._loadFragForPlayback(frag, level, targetBufferTime); } _loadFragForPlayback(frag, level, targetBufferTime) { const progressCallback = data => { if (this.fragContextChanged(frag)) { this.warn(`Fragment ${frag.sn}${data.part ? ' p: ' + data.part.index : ''} of level ${frag.level} was dropped during download.`); this.fragmentTracker.removeFragment(frag); return; } frag.stats.chunkCount++; this._handleFragmentLoadProgress(data); }; this._doFragLoad(frag, level, targetBufferTime, progressCallback).then(data => { if (!data) { // if we're here we probably needed to backtrack or are waiting for more parts return; } const state = this.state; if (this.fragContextChanged(frag)) { if (state === State.FRAG_LOADING || !this.fragCurrent && state === State.PARSING) { this.fragmentTracker.removeFragment(frag); this.state = State.IDLE; } return; } if ('payload' in data) { this.log(`Loaded fragment ${frag.sn} of level ${frag.level}`); this.hls.trigger(Events.FRAG_LOADED, data); } // Pass through the whole payload; controllers not implementing progressive loading receive data from this callback this._handleFragmentLoadComplete(data); }).catch(reason => { if (this.state === State.STOPPED || this.state === State.ERROR) { return; } this.warn(reason); this.resetFragmentLoading(frag); }); } clearTrackerIfNeeded(frag) { var _this$mediaBuffer; const { fragmentTracker } = this; const fragState = fragmentTracker.getState(frag); if (fragState === FragmentState.APPENDING) { // Lower the buffer size and try again const playlistType = frag.type; const bufferedInfo = this.getFwdBufferInfo(this.mediaBuffer, playlistType); const minForwardBufferLength = Math.max(frag.duration, bufferedInfo ? bufferedInfo.len : this.config.maxBufferLength); if (this.reduceMaxBufferLength(minForwardBufferLength)) { fragmentTracker.removeFragment(frag); } } else if (((_this$mediaBuffer = this.mediaBuffer) == null ? void 0 : _this$mediaBuffer.buffered.length) === 0) { // Stop gap for bad tracker / buffer flush behavior fragmentTracker.removeAllFragments(); } else if (fragmentTracker.hasParts(frag.type)) { // In low latency mode, remove fragments for which only some parts were buffered fragmentTracker.detectPartialFragments({ frag, part: null, stats: frag.stats, id: frag.type }); if (fragmentTracker.getState(frag) === FragmentState.PARTIAL) { fragmentTracker.removeFragment(frag); } } } checkLiveUpdate(details) { if (details.updated && !details.live) { // Live stream ended, update fragment tracker const lastFragment = details.fragments[details.fragments.length - 1]; this.fragmentTracker.detectPartialFragments({ frag: lastFragment, part: null, stats: lastFragment.stats, id: lastFragment.type }); } if (!details.fragments[0]) { details.deltaUpdateFailed = true; } } flushMainBuffer(startOffset, endOffset, type = null) { if (!(startOffset - endOffset)) { return; } // When alternate audio is playing, the audio-stream-controller is responsible for the audio buffer. Otherwise, // passing a null type flushes both buffers const flushScope = { startOffset, endOffset, type }; this.hls.trigger(Events.BUFFER_FLUSHING, flushScope); } _loadInitSegment(frag, level) { this._doFragLoad(frag, level).then(data => { if (!data || this.fragContextChanged(frag) || !this.levels) { throw new Error('init load aborted'); } return data; }).then(data => { const { hls } = this; const { payload } = data; const decryptData = frag.decryptdata; // check to see if the payload needs to be decrypted if (payload && payload.byteLength > 0 && decryptData != null && decryptData.key && decryptData.iv && isFullSegmentEncryption(decryptData.method)) { const startTime = self.performance.now(); // decrypt init segment data return this.decrypter.decrypt(new Uint8Array(payload), decryptData.key.buffer, decryptData.iv.buffer, getAesModeFromFullSegmentMethod(decryptData.method)).catch(err => { hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_DECRYPT_ERROR, fatal: false, error: err, reason: err.message, frag }); throw err; }).then(decryptedData => { const endTime = self.performance.now(); hls.trigger(Events.FRAG_DECRYPTED, { frag, payload: decryptedData, stats: { tstart: startTime, tdecrypt: endTime } }); data.payload = decryptedData; return this.completeInitSegmentLoad(data); }); } return this.completeInitSegmentLoad(data); }).catch(reason => { if (this.state === State.STOPPED || this.state === State.ERROR) { return; } this.warn(reason); this.resetFragmentLoading(frag); }); } completeInitSegmentLoad(data) { const { levels } = this; if (!levels) { throw new Error('init load aborted, missing levels'); } const stats = data.frag.stats; this.state = State.IDLE; data.frag.data = new Uint8Array(data.payload); stats.parsing.start = stats.buffering.start = self.performance.now(); stats.parsing.end = stats.buffering.end = self.performance.now(); this.tick(); } fragContextChanged(frag) { const { fragCurrent } = this; return !frag || !fragCurrent || frag.sn !== fragCurrent.sn || frag.level !== fragCurrent.level; } fragBufferedComplete(frag, part) { var _frag$startPTS, _frag$endPTS, _this$fragCurrent, _this$fragPrevious; const media = this.mediaBuffer ? this.mediaBuffer : this.media; this.log(`Buffered ${frag.type} sn: ${frag.sn}${part ? ' part: ' + part.index : ''} of ${this.playlistType === PlaylistLevelType.MAIN ? 'level' : 'track'} ${frag.level} (frag:[${((_frag$startPTS = frag.startPTS) != null ? _frag$startPTS : NaN).toFixed(3)}-${((_frag$endPTS = frag.endPTS) != null ? _frag$endPTS : NaN).toFixed(3)}] > buffer:${media ? TimeRanges.toString(BufferHelper.getBuffered(media)) : '(detached)'})`); if (frag.sn !== 'initSegment') { var _this$levels; if (frag.type !== PlaylistLevelType.SUBTITLE) { const el = frag.elementaryStreams; if (!Object.keys(el).some(type => !!el[type])) { // empty segment this.state = State.IDLE; return; } } const level = (_this$levels = this.levels) == null ? void 0 : _this$levels[frag.level]; if (level != null && level.fragmentError) { this.log(`Resetting level fragment error count of ${level.fragmentError} on frag buffered`); level.fragmentError = 0; } } this.state = State.IDLE; if (!media) { return; } if (!this.loadedmetadata && frag.type == PlaylistLevelType.MAIN && media.buffered.length && ((_this$fragCurrent = this.fragCurrent) == null ? void 0 : _this$fragCurrent.sn) === ((_this$fragPrevious = this.fragPrevious) == null ? void 0 : _this$fragPrevious.sn)) { this.loadedmetadata = true; this.seekToStartPos(); } this.tick(); } seekToStartPos() {} _handleFragmentLoadComplete(fragLoadedEndData) { const { transmuxer } = this; if (!transmuxer) { return; } const { frag, part, partsLoaded } = fragLoadedEndData; // If we did not load parts, or loaded all parts, we have complete (not partial) fragment data const complete = !partsLoaded || partsLoaded.length === 0 || partsLoaded.some(fragLoaded => !fragLoaded); const chunkMeta = new ChunkMetadata(frag.level, frag.sn, frag.stats.chunkCount + 1, 0, part ? part.index : -1, !complete); transmuxer.flush(chunkMeta); } // eslint-disable-next-line @typescript-eslint/no-unused-vars _handleFragmentLoadProgress(frag) {} _doFragLoad(frag, level, targetBufferTime = null, progressCallback) { var _frag$decryptdata; const details = level == null ? void 0 : level.details; if (!this.levels || !details) { throw new Error(`frag load aborted, missing level${details ? '' : ' detail'}s`); } let keyLoadingPromise = null; if (frag.encrypted && !((_frag$decryptdata = frag.decryptdata) != null && _frag$decryptdata.key)) { this.log(`Loading key for ${frag.sn} of [${details.startSN}-${details.endSN}], ${this.playlistType === PlaylistLevelType.MAIN ? 'level' : 'track'} ${frag.level}`); this.state = State.KEY_LOADING; this.fragCurrent = frag; keyLoadingPromise = this.keyLoader.load(frag).then(keyLoadedData => { if (!this.fragContextChanged(keyLoadedData.frag)) { this.hls.trigger(Events.KEY_LOADED, keyLoadedData); if (this.state === State.KEY_LOADING) { this.state = State.IDLE; } return keyLoadedData; } }); this.hls.trigger(Events.KEY_LOADING, { frag }); if (this.fragCurrent === null) { keyLoadingPromise = Promise.reject(new Error(`frag load aborted, context changed in KEY_LOADING`)); } } else if (!frag.encrypted && details.encryptedFragments.length) { this.keyLoader.loadClear(frag, details.encryptedFragments); } targetBufferTime = Math.max(frag.start, targetBufferTime || 0); if (this.config.lowLatencyMode && frag.sn !== 'initSegment') { const partList = details.partList; if (partList && progressCallback) { if (targetBufferTime > frag.end && details.fragmentHint) { frag = details.fragmentHint; } const partIndex = this.getNextPart(partList, frag, targetBufferTime); if (partIndex > -1) { const part = partList[partIndex]; this.log(`Loading part sn: ${frag.sn} p: ${part.index} cc: ${frag.cc} of playlist [${details.startSN}-${details.endSN}] parts [0-${partIndex}-${partList.length - 1}] ${this.playlistType === PlaylistLevelType.MAIN ? 'level' : 'track'}: ${frag.level}, target: ${parseFloat(targetBufferTime.toFixed(3))}`); this.nextLoadPosition = part.start + part.duration; this.state = State.FRAG_LOADING; let _result; if (keyLoadingPromise) { _result = keyLoadingPromise.then(keyLoadedData => { if (!keyLoadedData || this.fragContextChanged(keyLoadedData.frag)) { return null; } return this.doFragPartsLoad(frag, part, level, progressCallback); }).catch(error => this.handleFragLoadError(error)); } else { _result = this.doFragPartsLoad(frag, part, level, progressCallback).catch(error => this.handleFragLoadError(error)); } this.hls.trigger(Events.FRAG_LOADING, { frag, part, targetBufferTime }); if (this.fragCurrent === null) { return Promise.reject(new Error(`frag load aborted, context changed in FRAG_LOADING parts`)); } return _result; } else if (!frag.url || this.loadedEndOfParts(partList, targetBufferTime)) { // Fragment hint has no parts return Promise.resolve(null); } } } this.log(`Loading fragment ${frag.sn} cc: ${frag.cc} ${details ? 'of [' + details.startSN + '-' + details.endSN + '] ' : ''}${this.playlistType === PlaylistLevelType.MAIN ? 'level' : 'track'}: ${frag.level}, target: ${parseFloat(targetBufferTime.toFixed(3))}`); // Don't update nextLoadPosition for fragments which are not buffered if (isFiniteNumber(frag.sn) && !this.bitrateTest) { this.nextLoadPosition = frag.start + frag.duration; } this.state = State.FRAG_LOADING; // Load key before streaming fragment data const dataOnProgress = this.config.progressive; let result; if (dataOnProgress && keyLoadingPromise) { result = keyLoadingPromise.then(keyLoadedData => { if (!keyLoadedData || this.fragContextChanged(keyLoadedData == null ? void 0 : keyLoadedData.frag)) { return null; } return this.fragmentLoader.load(frag, progressCallback); }).catch(error => this.handleFragLoadError(error)); } else { // load unencrypted fragment data with progress event, // or handle fragment result after key and fragment are finished loading result = Promise.all([this.fragmentLoader.load(frag, dataOnProgress ? progressCallback : undefined), keyLoadingPromise]).then(([fragLoadedData]) => { if (!dataOnProgress && fragLoadedData && progressCallback) { progressCallback(fragLoadedData); } return fragLoadedData; }).catch(error => this.handleFragLoadError(error)); } this.hls.trigger(Events.FRAG_LOADING, { frag, targetBufferTime }); if (this.fragCurrent === null) { return Promise.reject(new Error(`frag load aborted, context changed in FRAG_LOADING`)); } return result; } doFragPartsLoad(frag, fromPart, level, progressCallback) { return new Promise((resolve, reject) => { var _level$details; const partsLoaded = []; const initialPartList = (_level$details = level.details) == null ? void 0 : _level$details.partList; const loadPart = part => { this.fragmentLoader.loadPart(frag, part, progressCallback).then(partLoadedData => { partsLoaded[part.index] = partLoadedData; const loadedPart = partLoadedData.part; this.hls.trigger(Events.FRAG_LOADED, partLoadedData); const nextPart = getPartWith(level, frag.sn, part.index + 1) || findPart(initialPartList, frag.sn, part.index + 1); if (nextPart) { loadPart(nextPart); } else { return resolve({ frag, part: loadedPart, partsLoaded }); } }).catch(reject); }; loadPart(fromPart); }); } handleFragLoadError(error) { if ('data' in error) { const data = error.data; if (error.data && data.details === ErrorDetails.INTERNAL_ABORTED) { this.handleFragLoadAborted(data.frag, data.part); } else { this.hls.trigger(Events.ERROR, data); } } else { this.hls.trigger(Events.ERROR, { type: ErrorTypes.OTHER_ERROR, details: ErrorDetails.INTERNAL_EXCEPTION, err: error, error, fatal: true }); } return null; } _handleTransmuxerFlush(chunkMeta) { const context = this.getCurrentContext(chunkMeta); if (!context || this.state !== State.PARSING) { if (!this.fragCurrent && this.state !== State.STOPPED && this.state !== State.ERROR) { this.state = State.IDLE; } return; } const { frag, part, level } = context; const now = self.performance.now(); frag.stats.parsing.end = now; if (part) { part.stats.parsing.end = now; } this.updateLevelTiming(frag, part, level, chunkMeta.partial); } getCurrentContext(chunkMeta) { const { levels, fragCurrent } = this; const { level: levelIndex, sn, part: partIndex } = chunkMeta; if (!(levels != null && levels[levelIndex])) { this.warn(`Levels object was unset while buffering fragment ${sn} of level ${levelIndex}. The current chunk will not be buffered.`); return null; } const level = levels[levelIndex]; const part = partIndex > -1 ? getPartWith(level, sn, partIndex) : null; const frag = part ? part.fragment : getFragmentWithSN(level, sn, fragCurrent); if (!frag) { return null; } if (fragCurrent && fragCurrent !== frag) { frag.stats = fragCurrent.stats; } return { frag, part, level }; } bufferFragmentData(data, frag, part, chunkMeta, noBacktracking) { var _buffer; if (!data || this.state !== State.PARSING) { return; } const { data1, data2 } = data; let buffer = data1; if (data1 && data2) { // Combine the moof + mdat so that we buffer with a single append buffer = appendUint8Array(data1, data2); } if (!((_buffer = buffer) != null && _buffer.length)) { return; } const segment = { type: data.type, frag, part, chunkMeta, parent: frag.type, data: buffer }; this.hls.trigger(Events.BUFFER_APPENDING, segment); if (data.dropped && data.independent && !part) { if (noBacktracking) { return; } // Clear buffer so that we reload previous segments sequentially if required this.flushBufferGap(frag); } } flushBufferGap(frag) { const media = this.media; if (!media) { return; } // If currentTime is not buffered, clear the back buffer so that we can backtrack as much as needed if (!BufferHelper.isBuffered(media, media.currentTime)) { this.flushMainBuffer(0, frag.start); return; } // Remove back-buffer without interrupting playback to allow back tracking const currentTime = media.currentTime; const bufferInfo = BufferHelper.bufferInfo(media, currentTime, 0); const fragDuration = frag.duration; const segmentFraction = Math.min(this.config.maxFragLookUpTolerance * 2, fragDuration * 0.25); const start = Math.max(Math.min(frag.start - segmentFraction, bufferInfo.end - segmentFraction), currentTime + segmentFraction); if (frag.start - start > segmentFraction) { this.flushMainBuffer(start, frag.start); } } getFwdBufferInfo(bufferable, type) { const pos = this.getLoadPosition(); if (!isFiniteNumber(pos)) { return null; } return this.getFwdBufferInfoAtPos(bufferable, pos, type); } getFwdBufferInfoAtPos(bufferable, pos, type) { const { config: { maxBufferHole } } = this; const bufferInfo = BufferHelper.bufferInfo(bufferable, pos, maxBufferHole); // Workaround flaw in getting forward buffer when maxBufferHole is smaller than gap at current pos if (bufferInfo.len === 0 && bufferInfo.nextStart !== undefined) { const bufferedFragAtPos = this.fragmentTracker.getBufferedFrag(pos, type); if (bufferedFragAtPos && bufferInfo.nextStart < bufferedFragAtPos.end) { return BufferHelper.bufferInfo(bufferable, pos, Math.max(bufferInfo.nextStart, maxBufferHole)); } } return bufferInfo; } getMaxBufferLength(levelBitrate) { const { config } = this; let maxBufLen; if (levelBitrate) { maxBufLen = Math.max(8 * config.maxBufferSize / levelBitrate, config.maxBufferLength); } else { maxBufLen = config.maxBufferLength; } return Math.min(maxBufLen, config.maxMaxBufferLength); } reduceMaxBufferLength(threshold) { const config = this.config; const minLength = threshold || config.maxBufferLength; if (config.maxMaxBufferLength >= minLength) { // reduce max buffer length as it might be too high. we do this to avoid loop flushing ... config.maxMaxBufferLength /= 2; this.warn(`Reduce max buffer length to ${config.maxMaxBufferLength}s`); return true; } return false; } getAppendedFrag(position, playlistType = PlaylistLevelType.MAIN) { const fragOrPart = this.fragmentTracker.getAppendedFrag(position, PlaylistLevelType.MAIN); if (fragOrPart && 'fragment' in fragOrPart) { return fragOrPart.fragment; } return fragOrPart; } getNextFragment(pos, levelDetails) { const fragments = levelDetails.fragments; const fragLen = fragments.length; if (!fragLen) { return null; } // find fragment index, contiguous with end of buffer position const { config } = this; const start = fragments[0].start; let frag; if (levelDetails.live) { const initialLiveManifestSize = config.initialLiveManifestSize; if (fragLen < initialLiveManifestSize) { this.warn(`Not enough fragments to start playback (have: ${fragLen}, need: ${initialLiveManifestSize})`); return null; } // The real fragment start times for a live stream are only known after the PTS range for that level is known. // In order to discover the range, we load the best matching fragment for that level and demux it. // Do not load using live logic if the starting frag is requested - we want to use getFragmentAtPosition() so that // we get the fragment matching that start time if (!levelDetails.PTSKnown && !this.startFragRequested && this.startPosition === -1 || pos < start) { frag = this.getInitialLiveFragment(levelDetails, fragments); this.startPosition = this.nextLoadPosition = frag ? this.hls.liveSyncPosition || frag.start : pos; } } else if (pos <= start) { // VoD playlist: if loadPosition before start of playlist, load first fragment frag = fragments[0]; } // If we haven't run into any special cases already, just load the fragment most closely matching the requested position if (!frag) { const end = config.lowLatencyMode ? levelDetails.partEnd : levelDetails.fragmentEnd; frag = this.getFragmentAtPosition(pos, end, levelDetails); } return this.mapToInitFragWhenRequired(frag); } isLoopLoading(frag, targetBufferTime) { const trackerState = this.fragmentTracker.getState(frag); return (trackerState === FragmentState.OK || trackerState === FragmentState.PARTIAL && !!frag.gap) && this.nextLoadPosition > targetBufferTime; } getNextFragmentLoopLoading(frag, levelDetails, bufferInfo, playlistType, maxBufLen) { const gapStart = frag.gap; const nextFragment = this.getNextFragment(this.nextLoadPosition, levelDetails); if (nextFragment === null) { return nextFragment; } frag = nextFragment; if (gapStart && frag && !frag.gap && bufferInfo.nextStart) { // Media buffered after GAP tags should not make the next buffer timerange exceed forward buffer length const nextbufferInfo = this.getFwdBufferInfoAtPos(this.mediaBuffer ? this.mediaBuffer : this.media, bufferInfo.nextStart, playlistType); if (nextbufferInfo !== null && bufferInfo.len + nextbufferInfo.len >= maxBufLen) { // Returning here might result in not finding an audio and video candiate to skip to this.log(`buffer full after gaps in "${playlistType}" playlist starting at sn: ${frag.sn}`); return null; } } return frag; } mapToInitFragWhenRequired(frag) { // If an initSegment is present, it must be buffered first if (frag != null && frag.initSegment && !(frag != null && frag.initSegment.data) && !this.bitrateTest) { return frag.initSegment; } return frag; } getNextPart(partList, frag, targetBufferTime) { let nextPart = -1; let contiguous = false; let independentAttrOmitted = true; for (let i = 0, len = partList.length; i < len; i++) { const part = partList[i]; independentAttrOmitted = independentAttrOmitted && !part.independent; if (nextPart > -1 && targetBufferTime < part.start) { break; } const loaded = part.loaded; if (loaded) { nextPart = -1; } else if ((contiguous || part.independent || independentAttrOmitted) && part.fragment === frag) { nextPart = i; } contiguous = loaded; } return nextPart; } loadedEndOfParts(partList, targetBufferTime) { const lastPart = partList[partList.length - 1]; return lastPart && targetBufferTime > lastPart.start && lastPart.loaded; } /* This method is used find the best matching first fragment for a live playlist. This fragment is used to calculate the "sliding" of the playlist, which is its offset from the start of playback. After sliding we can compute the real start and end times for each fragment in the playlist (after which this method will not need to be called). */ getInitialLiveFragment(levelDetails, fragments) { const fragPrevious = this.fragPrevious; let frag = null; if (fragPrevious) { if (levelDetails.hasProgramDateTime) { // Prefer using PDT, because it can be accurate enough to choose the correct fragment without knowing the level sliding this.log(`Live playlist, switching playlist, load frag with same PDT: ${fragPrevious.programDateTime}`); frag = findFragmentByPDT(fragments, fragPrevious.endProgramDateTime, this.config.maxFragLookUpTolerance); } if (!frag) { // SN does not need to be accurate between renditions, but depending on the packaging it may be so. const targetSN = fragPrevious.sn + 1; if (targetSN >= levelDetails.startSN && targetSN <= levelDetails.endSN) { const fragNext = fragments[targetSN - levelDetails.startSN]; // Ensure that we're staying within the continuity range, since PTS resets upon a new range if (fragPrevious.cc === fragNext.cc) { frag = fragNext; this.log(`Live playlist, switching playlist, load frag with next SN: ${frag.sn}`); } } // It's important to stay within the continuity range if available; otherwise the fragments in the playlist // will have the wrong start times if (!frag) { frag = findFragWithCC(fragments, fragPrevious.cc); if (frag) { this.log(`Live playlist, switching playlist, load frag with same CC: ${frag.sn}`); } } } } else { // Find a new start fragment when fragPrevious is null const liveStart = this.hls.liveSyncPosition; if (liveStart !== null) { frag = this.getFragmentAtPosition(liveStart, this.bitrateTest ? levelDetails.fragmentEnd : levelDetails.edge, levelDetails); } } return frag; } /* This method finds the best matching fragment given the provided position. */ getFragmentAtPosition(bufferEnd, end, levelDetails) { const { config } = this; let { fragPrevious } = this; let { fragments, endSN } = levelDetails; const { fragmentHint } = levelDetails; const tolerance = config.maxFragLookUpTolerance; const partList = levelDetails.partList; const loadingParts = !!(config.lowLatencyMode && partList != null && partList.length && fragmentHint); if (loadingParts && fragmentHint && !this.bitrateTest) { // Include incomplete fragment with parts at end fragments = fragments.concat(fragmentHint); endSN = fragmentHint.sn; } let frag; if (bufferEnd < end) { const lookupTolerance = bufferEnd > end - tolerance ? 0 : tolerance; // Remove the tolerance if it would put the bufferEnd past the actual end of stream // Uses buffer and sequence number to calculate switch segment (required if using EXT-X-DISCONTINUITY-SEQUENCE) frag = findFragmentByPTS(fragPrevious, fragments, bufferEnd, lookupTolerance); } else { // reach end of playlist frag = fragments[fragments.length - 1]; } if (frag) { const curSNIdx = frag.sn - levelDetails.startSN; // Move fragPrevious forward to support forcing the next fragment to load // when the buffer catches up to a previously buffered range. const fragState = this.fragmentTracker.getState(frag); if (fragState === FragmentState.OK || fragState === FragmentState.PARTIAL && frag.gap) { fragPrevious = frag; } if (fragPrevious && frag.sn === fragPrevious.sn && (!loadingParts || partList[0].fragment.sn > frag.sn)) { // Force the next fragment to load if the previous one was already selected. This can occasionally happen with // non-uniform fragment durations const sameLevel = fragPrevious && frag.level === fragPrevious.level; if (sameLevel) { const nextFrag = fragments[curSNIdx + 1]; if (frag.sn < endSN && this.fragmentTracker.getState(nextFrag) !== FragmentState.OK) { frag = nextFrag; } else { frag = null; } } } } return frag; } synchronizeToLiveEdge(levelDetails) { const { config, media } = this; if (!media) { return; } const liveSyncPosition = this.hls.liveSyncPosition; const currentTime = media.currentTime; const start = levelDetails.fragments[0].start; const end = levelDetails.edge; const withinSlidingWindow = currentTime >= start - config.maxFragLookUpTolerance && currentTime <= end; // Continue if we can seek forward to sync position or if current time is outside of sliding window if (liveSyncPosition !== null && media.duration > liveSyncPosition && (currentTime < liveSyncPosition || !withinSlidingWindow)) { // Continue if buffer is starving or if current time is behind max latency const maxLatency = config.liveMaxLatencyDuration !== undefined ? config.liveMaxLatencyDuration : config.liveMaxLatencyDurationCount * levelDetails.targetduration; if (!withinSlidingWindow && media.readyState < 4 || currentTime < end - maxLatency) { if (!this.loadedmetadata) { this.nextLoadPosition = liveSyncPosition; } // Only seek if ready and there is not a significant forward buffer available for playback if (media.readyState) { this.warn(`Playback: ${currentTime.toFixed(3)} is located too far from the end of live sliding playlist: ${end}, reset currentTime to : ${liveSyncPosition.toFixed(3)}`); media.currentTime = liveSyncPosition; } } } } alignPlaylists(details, previousDetails, switchDetails) { // FIXME: If not for `shouldAlignOnDiscontinuities` requiring fragPrevious.cc, // this could all go in level-helper mergeDetails() const length = details.fragments.length; if (!length) { this.warn(`No fragments in live playlist`); return 0; } const slidingStart = details.fragments[0].start; const firstLevelLoad = !previousDetails; const aligned = details.alignedSliding && isFiniteNumber(slidingStart); if (firstLevelLoad || !aligned && !slidingStart) { const { fragPrevious } = this; alignStream(fragPrevious, switchDetails, details); const alignedSlidingStart = details.fragments[0].start; this.log(`Live playlist sliding: ${alignedSlidingStart.toFixed(2)} start-sn: ${previousDetails ? previousDetails.startSN : 'na'}->${details.startSN} prev-sn: ${fragPrevious ? fragPrevious.sn : 'na'} fragments: ${length}`); return alignedSlidingStart; } return slidingStart; } waitForCdnTuneIn(details) { // Wait for Low-Latency CDN Tune-in to get an updated playlist const advancePartLimit = 3; return details.live && details.canBlockReload && details.partTarget && details.tuneInGoal > Math.max(details.partHoldBack, details.partTarget * advancePartLimit); } setStartPosition(details, sliding) { // compute start position if set to -1. use it straight away if value is defined let startPosition = this.startPosition; if (startPosition < sliding) { startPosition = -1; } if (startPosition === -1 || this.lastCurrentTime === -1) { // Use Playlist EXT-X-START:TIME-OFFSET when set // Prioritize Multivariant Playlist offset so that main, audio, and subtitle stream-controller start times match const offsetInMultivariantPlaylist = this.startTimeOffset !== null; const startTimeOffset = offsetInMultivariantPlaylist ? this.startTimeOffset : details.startTimeOffset; if (startTimeOffset !== null && isFiniteNumber(startTimeOffset)) { startPosition = sliding + startTimeOffset; if (startTimeOffset < 0) { startPosition += details.totalduration; } startPosition = Math.min(Math.max(sliding, startPosition), sliding + details.totalduration); this.log(`Start time offset ${startTimeOffset} found in ${offsetInMultivariantPlaylist ? 'multivariant' : 'media'} playlist, adjust startPosition to ${startPosition}`); this.startPosition = startPosition; } else if (details.live) { // Leave this.startPosition at -1, so that we can use `getInitialLiveFragment` logic when startPosition has // not been specified via the config or an as an argument to startLoad (#3736). startPosition = this.hls.liveSyncPosition || sliding; } else { this.startPosition = startPosition = 0; } this.lastCurrentTime = startPosition; } this.nextLoadPosition = startPosition; } getLoadPosition() { const { media } = this; // if we have not yet loaded any fragment, start loading from start position let pos = 0; if (this.loadedmetadata && media) { pos = media.currentTime; } else if (this.nextLoadPosition) { pos = this.nextLoadPosition; } return pos; } handleFragLoadAborted(frag, part) { if (this.transmuxer && frag.sn !== 'initSegment' && frag.stats.aborted) { this.warn(`Fragment ${frag.sn}${part ? ' part ' + part.index : ''} of level ${frag.level} was aborted`); this.resetFragmentLoading(frag); } } resetFragmentLoading(frag) { if (!this.fragCurrent || !this.fragContextChanged(frag) && this.state !== State.FRAG_LOADING_WAITING_RETRY) { this.state = State.IDLE; } } onFragmentOrKeyLoadError(filterType, data) { if (data.chunkMeta && !data.frag) { const context = this.getCurrentContext(data.chunkMeta); if (context) { data.frag = context.frag; } } const frag = data.frag; // Handle frag error related to caller's filterType if (!frag || frag.type !== filterType || !this.levels) { return; } if (this.fragContextChanged(frag)) { var _this$fragCurrent2; this.warn(`Frag load error must match current frag to retry ${frag.url} > ${(_this$fragCurrent2 = this.fragCurrent) == null ? void 0 : _this$fragCurrent2.url}`); return; } const gapTagEncountered = data.details === ErrorDetails.FRAG_GAP; if (gapTagEncountered) { this.fragmentTracker.fragBuffered(frag, true); } // keep retrying until the limit will be reached const errorAction = data.errorAction; const { action, retryCount = 0, retryConfig } = errorAction || {}; if (errorAction && action === NetworkErrorAction.RetryRequest && retryConfig) { this.resetStartWhenNotLoaded(this.levelLastLoaded); const delay = getRetryDelay(retryConfig, retryCount); this.warn(`Fragment ${frag.sn} of ${filterType} ${frag.level} errored with ${data.details}, retrying loading ${retryCount + 1}/${retryConfig.maxNumRetry} in ${delay}ms`); errorAction.resolved = true; this.retryDate = self.performance.now() + delay; this.state = State.FRAG_LOADING_WAITING_RETRY; } else if (retryConfig && errorAction) { this.resetFragmentErrors(filterType); if (retryCount < retryConfig.maxNumRetry) { // Network retry is skipped when level switch is preferred if (!gapTagEncountered && action !== NetworkErrorAction.RemoveAlternatePermanently) { errorAction.resolved = true; } } else { this.warn(`${data.details} reached or exceeded max retry (${retryCount})`); return; } } else if ((errorAction == null ? void 0 : errorAction.action) === NetworkErrorAction.SendAlternateToPenaltyBox) { this.state = State.WAITING_LEVEL; } else { this.state = State.ERROR; } // Perform next async tick sooner to speed up error action resolution this.tickImmediate(); } reduceLengthAndFlushBuffer(data) { // if in appending state if (this.state === State.PARSING || this.state === State.PARSED) { const playlistType = data.parent; const bufferedInfo = this.getFwdBufferInfo(this.mediaBuffer, playlistType); // 0.5 : tolerance needed as some browsers stalls playback before reaching buffered end // reduce max buf len if current position is buffered const buffered = bufferedInfo && bufferedInfo.len > 0.5; if (buffered) { this.reduceMaxBufferLength(bufferedInfo.len); } const flushBuffer = !buffered; if (flushBuffer) { // current position is not buffered, but browser is still complaining about buffer full error // this happens on IE/Edge, refer to https://github.com/video-dev/hls.js/pull/708 // in that case flush the whole audio buffer to recover this.warn(`Buffer full error while media.currentTime is not buffered, flush ${playlistType} buffer`); } if (data.frag) { this.fragmentTracker.removeFragment(data.frag); this.nextLoadPosition = data.frag.start; } this.resetLoadingState(); return flushBuffer; } return false; } resetFragmentErrors(filterType) { if (filterType === PlaylistLevelType.AUDIO) { // Reset current fragment since audio track audio is essential and may not have a fail-over track this.fragCurrent = null; } // Fragment errors that result in a level switch or redundant fail-over // should reset the stream controller state to idle if (!this.loadedmetadata) { this.startFragRequested = false; } if (this.state !== State.STOPPED) { this.state = State.IDLE; } } afterBufferFlushed(media, bufferType, playlistType) { if (!media) { return; } // After successful buffer flushing, filter flushed fragments from bufferedFrags use mediaBuffered instead of media // (so that we will check against video.buffered ranges in case of alt audio track) const bufferedTimeRanges = BufferHelper.getBuffered(media); this.fragmentTracker.detectEvictedFragments(bufferType, bufferedTimeRanges, playlistType); if (this.state === State.ENDED) { this.resetLoadingState(); } } resetLoadingState() { this.log('Reset loading state'); this.fragCurrent = null; this.fragPrevious = null; this.state = State.IDLE; } resetStartWhenNotLoaded(level) { // if loadedmetadata is not set, it means that first frag request failed // in that case, reset startFragRequested flag if (!this.loadedmetadata) { this.startFragRequested = false; const details = level ? level.details : null; if (details != null && details.live) { // Update the start position and return to IDLE to recover live start this.startPosition = -1; this.setStartPosition(details, 0); this.resetLoadingState(); } else { this.nextLoadPosition = this.startPosition; } } } resetWhenMissingContext(chunkMeta) { this.warn(`The loading context changed while buffering fragment ${chunkMeta.sn} of level ${chunkMeta.level}. This chunk will not be buffered.`); this.removeUnbufferedFrags(); this.resetStartWhenNotLoaded(this.levelLastLoaded); this.resetLoadingState(); } removeUnbufferedFrags(start = 0) { this.fragmentTracker.removeFragmentsInRange(start, Infinity, this.playlistType, false, true); } updateLevelTiming(frag, part, level, partial) { var _this$transmuxer; const details = level.details; if (!details) { this.warn('level.details undefined'); return; } const parsed = Object.keys(frag.elementaryStreams).reduce((result, type) => { const info = frag.elementaryStreams[type]; if (info) { const parsedDuration = info.endPTS - info.startPTS; if (parsedDuration <= 0) { // Destroy the transmuxer after it's next time offset failed to advance because duration was <= 0. // The new transmuxer will be configured with a time offset matching the next fragment start, // preventing the timeline from shifting. this.warn(`Could not parse fragment ${frag.sn} ${type} duration reliably (${parsedDuration})`); return result || false; } const drift = partial ? 0 : updateFragPTSDTS(details, frag, info.startPTS, info.endPTS, info.startDTS, info.endDTS); this.hls.trigger(Events.LEVEL_PTS_UPDATED, { details, level, drift, type, frag, start: info.startPTS, end: info.endPTS }); return true; } return result; }, false); if (!parsed && ((_this$transmuxer = this.transmuxer) == null ? void 0 : _this$transmuxer.error) === null) { const error = new Error(`Found no media in fragment ${frag.sn} of level ${frag.level} resetting transmuxer to fallback to playlist timing`); if (level.fragmentError === 0) { // Mark and track the odd empty segment as a gap to avoid reloading level.fragmentError++; frag.gap = true; this.fragmentTracker.removeFragment(frag); this.fragmentTracker.fragBuffered(frag, true); } this.warn(error.message); this.hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_PARSING_ERROR, fatal: false, error, frag, reason: `Found no media in msn ${frag.sn} of level "${level.url}"` }); if (!this.hls) { return; } this.resetTransmuxer(); // For this error fallthrough. Marking parsed will allow advancing to next fragment. } this.state = State.PARSED; this.hls.trigger(Events.FRAG_PARSED, { frag, part }); } resetTransmuxer() { if (this.transmuxer) { this.transmuxer.destroy(); this.transmuxer = null; } } recoverWorkerError(data) { if (data.event === 'demuxerWorker') { this.fragmentTracker.removeAllFragments(); this.resetTransmuxer(); this.resetStartWhenNotLoaded(this.levelLastLoaded); this.resetLoadingState(); } } set state(nextState) { const previousState = this._state; if (previousState !== nextState) { this._state = nextState; this.log(`${previousState}->${nextState}`); } } get state() { return this._state; } } function getSourceBuffer() { return self.SourceBuffer || self.WebKitSourceBuffer; } function isMSESupported() { const mediaSource = getMediaSource(); if (!mediaSource) { return false; } // if SourceBuffer is exposed ensure its API is valid // Older browsers do not expose SourceBuffer globally so checking SourceBuffer.prototype is impossible const sourceBuffer = getSourceBuffer(); return !sourceBuffer || sourceBuffer.prototype && typeof sourceBuffer.prototype.appendBuffer === 'function' && typeof sourceBuffer.prototype.remove === 'function'; } function isSupported() { if (!isMSESupported()) { return false; } const mediaSource = getMediaSource(); return typeof (mediaSource == null ? void 0 : mediaSource.isTypeSupported) === 'function' && (['avc1.42E01E,mp4a.40.2', 'av01.0.01M.08', 'vp09.00.50.08'].some(codecsForVideoContainer => mediaSource.isTypeSupported(mimeTypeForCodec(codecsForVideoContainer, 'video'))) || ['mp4a.40.2', 'fLaC'].some(codecForAudioContainer => mediaSource.isTypeSupported(mimeTypeForCodec(codecForAudioContainer, 'audio')))); } function changeTypeSupported() { var _sourceBuffer$prototy; const sourceBuffer = getSourceBuffer(); return typeof (sourceBuffer == null ? void 0 : (_sourceBuffer$prototy = sourceBuffer.prototype) == null ? void 0 : _sourceBuffer$prototy.changeType) === 'function'; } // ensure the worker ends up in the bundle // If the worker should not be included this gets aliased to empty.js function hasUMDWorker() { return typeof __HLS_WORKER_BUNDLE__ === 'function'; } function injectWorker() { const blob = new self.Blob([`var exports={};var module={exports:exports};function define(f){f()};define.amd=true;(${__HLS_WORKER_BUNDLE__.toString()})(true);`], { type: 'text/javascript' }); const objectURL = self.URL.createObjectURL(blob); const worker = new self.Worker(objectURL); return { worker, objectURL }; } function loadWorker(path) { const scriptURL = new self.URL(path, self.location.href).href; const worker = new self.Worker(scriptURL); return { worker, scriptURL }; } function dummyTrack(type = '', inputTimeScale = 90000) { return { type, id: -1, pid: -1, inputTimeScale, sequenceNumber: -1, samples: [], dropped: 0 }; } class BaseAudioDemuxer { constructor() { this._audioTrack = void 0; this._id3Track = void 0; this.frameIndex = 0; this.cachedData = null; this.basePTS = null; this.initPTS = null; this.lastPTS = null; } resetInitSegment(initSegment, audioCodec, videoCodec, trackDuration) { this._id3Track = { type: 'id3', id: 3, pid: -1, inputTimeScale: 90000, sequenceNumber: 0, samples: [], dropped: 0 }; } resetTimeStamp(deaultTimestamp) { this.initPTS = deaultTimestamp; this.resetContiguity(); } resetContiguity() { this.basePTS = null; this.lastPTS = null; this.frameIndex = 0; } canParse(data, offset) { return false; } appendFrame(track, data, offset) {} // feed incoming data to the front of the parsing pipeline demux(data, timeOffset) { if (this.cachedData) { data = appendUint8Array(this.cachedData, data); this.cachedData = null; } let id3Data = getID3Data(data, 0); let offset = id3Data ? id3Data.length : 0; let lastDataIndex; const track = this._audioTrack; const id3Track = this._id3Track; const timestamp = id3Data ? getTimeStamp(id3Data) : undefined; const length = data.length; if (this.basePTS === null || this.frameIndex === 0 && isFiniteNumber(timestamp)) { this.basePTS = initPTSFn(timestamp, timeOffset, this.initPTS); this.lastPTS = this.basePTS; } if (this.lastPTS === null) { this.lastPTS = this.basePTS; } // more expressive than alternative: id3Data?.length if (id3Data && id3Data.length > 0) { id3Track.samples.push({ pts: this.lastPTS, dts: this.lastPTS, data: id3Data, type: MetadataSchema.audioId3, duration: Number.POSITIVE_INFINITY }); } while (offset < length) { if (this.canParse(data, offset)) { const frame = this.appendFrame(track, data, offset); if (frame) { this.frameIndex++; this.lastPTS = frame.sample.pts; offset += frame.length; lastDataIndex = offset; } else { offset = length; } } else if (canParse$2(data, offset)) { // after a ID3.canParse, a call to ID3.getID3Data *should* always returns some data id3Data = getID3Data(data, offset); id3Track.samples.push({ pts: this.lastPTS, dts: this.lastPTS, data: id3Data, type: MetadataSchema.audioId3, duration: Number.POSITIVE_INFINITY }); offset += id3Data.length; lastDataIndex = offset; } else { offset++; } if (offset === length && lastDataIndex !== length) { const partialData = sliceUint8(data, lastDataIndex); if (this.cachedData) { this.cachedData = appendUint8Array(this.cachedData, partialData); } else { this.cachedData = partialData; } } } return { audioTrack: track, videoTrack: dummyTrack(), id3Track, textTrack: dummyTrack() }; } demuxSampleAes(data, keyData, timeOffset) { return Promise.reject(new Error(`[${this}] This demuxer does not support Sample-AES decryption`)); } flush(timeOffset) { // Parse cache in case of remaining frames. const cachedData = this.cachedData; if (cachedData) { this.cachedData = null; this.demux(cachedData, 0); } return { audioTrack: this._audioTrack, videoTrack: dummyTrack(), id3Track: this._id3Track, textTrack: dummyTrack() }; } destroy() {} } /** * Initialize PTS * <p> * use timestamp unless it is undefined, NaN or Infinity * </p> */ const initPTSFn = (timestamp, timeOffset, initPTS) => { if (isFiniteNumber(timestamp)) { return timestamp * 90; } const init90kHz = initPTS ? initPTS.baseTime * 90000 / initPTS.timescale : 0; return timeOffset * 90000 + init90kHz; }; /** * ADTS parser helper * @link https://wiki.multimedia.cx/index.php?title=ADTS */ function getAudioConfig(observer, data, offset, audioCodec) { let adtsObjectType; let originalAdtsObjectType; let adtsExtensionSamplingIndex; let adtsChannelConfig; let config; const userAgent = navigator.userAgent.toLowerCase(); const manifestCodec = audioCodec; const adtsSamplingRates = [96000, 88200, 64000, 48000, 44100, 32000, 24000, 22050, 16000, 12000, 11025, 8000, 7350]; // byte 2 adtsObjectType = originalAdtsObjectType = ((data[offset + 2] & 0xc0) >>> 6) + 1; const adtsSamplingIndex = (data[offset + 2] & 0x3c) >>> 2; if (adtsSamplingIndex > adtsSamplingRates.length - 1) { const error = new Error(`invalid ADTS sampling index:${adtsSamplingIndex}`); observer.emit(Events.ERROR, Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_PARSING_ERROR, fatal: true, error, reason: error.message }); return; } adtsChannelConfig = (data[offset + 2] & 0x01) << 2; // byte 3 adtsChannelConfig |= (data[offset + 3] & 0xc0) >>> 6; logger.log(`manifest codec:${audioCodec}, ADTS type:${adtsObjectType}, samplingIndex:${adtsSamplingIndex}`); // Firefox and Pale Moon: freq less than 24kHz = AAC SBR (HE-AAC) if (/firefox|palemoon/i.test(userAgent)) { if (adtsSamplingIndex >= 6) { adtsObjectType = 5; config = new Array(4); // HE-AAC uses SBR (Spectral Band Replication) , high frequencies are constructed from low frequencies // there is a factor 2 between frame sample rate and output sample rate // multiply frequency by 2 (see table below, equivalent to substract 3) adtsExtensionSamplingIndex = adtsSamplingIndex - 3; } else { adtsObjectType = 2; config = new Array(2); adtsExtensionSamplingIndex = adtsSamplingIndex; } // Android : always use AAC } else if (userAgent.indexOf('android') !== -1) { adtsObjectType = 2; config = new Array(2); adtsExtensionSamplingIndex = adtsSamplingIndex; } else { /* for other browsers (Chrome/Vivaldi/Opera ...) always force audio type to be HE-AAC SBR, as some browsers do not support audio codec switch properly (like Chrome ...) */ adtsObjectType = 5; config = new Array(4); // if (manifest codec is HE-AAC or HE-AACv2) OR (manifest codec not specified AND frequency less than 24kHz) if (audioCodec && (audioCodec.indexOf('mp4a.40.29') !== -1 || audioCodec.indexOf('mp4a.40.5') !== -1) || !audioCodec && adtsSamplingIndex >= 6) { // HE-AAC uses SBR (Spectral Band Replication) , high frequencies are constructed from low frequencies // there is a factor 2 between frame sample rate and output sample rate // multiply frequency by 2 (see table below, equivalent to substract 3) adtsExtensionSamplingIndex = adtsSamplingIndex - 3; } else { // if (manifest codec is AAC) AND (frequency less than 24kHz AND nb channel is 1) OR (manifest codec not specified and mono audio) // Chrome fails to play back with low frequency AAC LC mono when initialized with HE-AAC. This is not a problem with stereo. if (audioCodec && audioCodec.indexOf('mp4a.40.2') !== -1 && (adtsSamplingIndex >= 6 && adtsChannelConfig === 1 || /vivaldi/i.test(userAgent)) || !audioCodec && adtsChannelConfig === 1) { adtsObjectType = 2; config = new Array(2); } adtsExtensionSamplingIndex = adtsSamplingIndex; } } /* refer to http://wiki.multimedia.cx/index.php?title=MPEG-4_Audio#Audio_Specific_Config ISO 14496-3 (AAC).pdf - Table 1.13 — Syntax of AudioSpecificConfig() Audio Profile / Audio Object Type 0: Null 1: AAC Main 2: AAC LC (Low Complexity) 3: AAC SSR (Scalable Sample Rate) 4: AAC LTP (Long Term Prediction) 5: SBR (Spectral Band Replication) 6: AAC Scalable sampling freq 0: 96000 Hz 1: 88200 Hz 2: 64000 Hz 3: 48000 Hz 4: 44100 Hz 5: 32000 Hz 6: 24000 Hz 7: 22050 Hz 8: 16000 Hz 9: 12000 Hz 10: 11025 Hz 11: 8000 Hz 12: 7350 Hz 13: Reserved 14: Reserved 15: frequency is written explictly Channel Configurations These are the channel configurations: 0: Defined in AOT Specifc Config 1: 1 channel: front-center 2: 2 channels: front-left, front-right */ // audioObjectType = profile => profile, the MPEG-4 Audio Object Type minus 1 config[0] = adtsObjectType << 3; // samplingFrequencyIndex config[0] |= (adtsSamplingIndex & 0x0e) >> 1; config[1] |= (adtsSamplingIndex & 0x01) << 7; // channelConfiguration config[1] |= adtsChannelConfig << 3; if (adtsObjectType === 5) { // adtsExtensionSamplingIndex config[1] |= (adtsExtensionSamplingIndex & 0x0e) >> 1; config[2] = (adtsExtensionSamplingIndex & 0x01) << 7; // adtsObjectType (force to 2, chrome is checking that object type is less than 5 ??? // https://chromium.googlesource.com/chromium/src.git/+/master/media/formats/mp4/aac.cc config[2] |= 2 << 2; config[3] = 0; } return { config, samplerate: adtsSamplingRates[adtsSamplingIndex], channelCount: adtsChannelConfig, codec: 'mp4a.40.' + adtsObjectType, parsedCodec: 'mp4a.40.' + originalAdtsObjectType, manifestCodec }; } function isHeaderPattern$1(data, offset) { return data[offset] === 0xff && (data[offset + 1] & 0xf6) === 0xf0; } function getHeaderLength(data, offset) { return data[offset + 1] & 0x01 ? 7 : 9; } function getFullFrameLength(data, offset) { return (data[offset + 3] & 0x03) << 11 | data[offset + 4] << 3 | (data[offset + 5] & 0xe0) >>> 5; } function canGetFrameLength(data, offset) { return offset + 5 < data.length; } function isHeader$1(data, offset) { // Look for ADTS header | 1111 1111 | 1111 X00X | where X can be either 0 or 1 // Layer bits (position 14 and 15) in header should be always 0 for ADTS // More info https://wiki.multimedia.cx/index.php?title=ADTS return offset + 1 < data.length && isHeaderPattern$1(data, offset); } function canParse$1(data, offset) { return canGetFrameLength(data, offset) && isHeaderPattern$1(data, offset) && getFullFrameLength(data, offset) <= data.length - offset; } function probe$1(data, offset) { // same as isHeader but we also check that ADTS frame follows last ADTS frame // or end of data is reached if (isHeader$1(data, offset)) { // ADTS header Length const headerLength = getHeaderLength(data, offset); if (offset + headerLength >= data.length) { return false; } // ADTS frame Length const frameLength = getFullFrameLength(data, offset); if (frameLength <= headerLength) { return false; } const newOffset = offset + frameLength; return newOffset === data.length || isHeader$1(data, newOffset); } return false; } function initTrackConfig(track, observer, data, offset, audioCodec) { if (!track.samplerate) { const config = getAudioConfig(observer, data, offset, audioCodec); if (!config) { return; } track.config = config.config; track.samplerate = config.samplerate; track.channelCount = config.channelCount; track.codec = config.codec; track.manifestCodec = config.manifestCodec; track.parsedCodec = config.parsedCodec; logger.log(`parsed codec:${track.parsedCodec}, codec:${track.codec}, rate:${config.samplerate}, channels:${config.channelCount}`); } } function getFrameDuration(samplerate) { return 1024 * 90000 / samplerate; } function parseFrameHeader(data, offset) { // The protection skip bit tells us if we have 2 bytes of CRC data at the end of the ADTS header const headerLength = getHeaderLength(data, offset); if (offset + headerLength <= data.length) { // retrieve frame size const frameLength = getFullFrameLength(data, offset) - headerLength; if (frameLength > 0) { // logger.log(`AAC frame, offset/length/total/pts:${offset+headerLength}/${frameLength}/${data.byteLength}`); return { headerLength, frameLength }; } } } function appendFrame$1(track, data, offset, pts, frameIndex) { const frameDuration = getFrameDuration(track.samplerate); const stamp = pts + frameIndex * frameDuration; const header = parseFrameHeader(data, offset); let unit; if (header) { const { frameLength, headerLength } = header; const _length = headerLength + frameLength; const missing = Math.max(0, offset + _length - data.length); // logger.log(`AAC frame ${frameIndex}, pts:${stamp} length@offset/total: ${frameLength}@${offset+headerLength}/${data.byteLength} missing: ${missing}`); if (missing) { unit = new Uint8Array(_length - headerLength); unit.set(data.subarray(offset + headerLength, data.length), 0); } else { unit = data.subarray(offset + headerLength, offset + _length); } const _sample = { unit, pts: stamp }; if (!missing) { track.samples.push(_sample); } return { sample: _sample, length: _length, missing }; } // overflow incomplete header const length = data.length - offset; unit = new Uint8Array(length); unit.set(data.subarray(offset, data.length), 0); const sample = { unit, pts: stamp }; return { sample, length, missing: -1 }; } /** * MPEG parser helper */ let chromeVersion$1 = null; const BitratesMap = [32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160]; const SamplingRateMap = [44100, 48000, 32000, 22050, 24000, 16000, 11025, 12000, 8000]; const SamplesCoefficients = [ // MPEG 2.5 [0, // Reserved 72, // Layer3 144, // Layer2 12 // Layer1 ], // Reserved [0, // Reserved 0, // Layer3 0, // Layer2 0 // Layer1 ], // MPEG 2 [0, // Reserved 72, // Layer3 144, // Layer2 12 // Layer1 ], // MPEG 1 [0, // Reserved 144, // Layer3 144, // Layer2 12 // Layer1 ]]; const BytesInSlot = [0, // Reserved 1, // Layer3 1, // Layer2 4 // Layer1 ]; function appendFrame(track, data, offset, pts, frameIndex) { // Using http://www.datavoyage.com/mpgscript/mpeghdr.htm as a reference if (offset + 24 > data.length) { return; } const header = parseHeader(data, offset); if (header && offset + header.frameLength <= data.length) { const frameDuration = header.samplesPerFrame * 90000 / header.sampleRate; const stamp = pts + frameIndex * frameDuration; const sample = { unit: data.subarray(offset, offset + header.frameLength), pts: stamp, dts: stamp }; track.config = []; track.channelCount = header.channelCount; track.samplerate = header.sampleRate; track.samples.push(sample); return { sample, length: header.frameLength, missing: 0 }; } } function parseHeader(data, offset) { const mpegVersion = data[offset + 1] >> 3 & 3; const mpegLayer = data[offset + 1] >> 1 & 3; const bitRateIndex = data[offset + 2] >> 4 & 15; const sampleRateIndex = data[offset + 2] >> 2 & 3; if (mpegVersion !== 1 && bitRateIndex !== 0 && bitRateIndex !== 15 && sampleRateIndex !== 3) { const paddingBit = data[offset + 2] >> 1 & 1; const channelMode = data[offset + 3] >> 6; const columnInBitrates = mpegVersion === 3 ? 3 - mpegLayer : mpegLayer === 3 ? 3 : 4; const bitRate = BitratesMap[columnInBitrates * 14 + bitRateIndex - 1] * 1000; const columnInSampleRates = mpegVersion === 3 ? 0 : mpegVersion === 2 ? 1 : 2; const sampleRate = SamplingRateMap[columnInSampleRates * 3 + sampleRateIndex]; const channelCount = channelMode === 3 ? 1 : 2; // If bits of channel mode are `11` then it is a single channel (Mono) const sampleCoefficient = SamplesCoefficients[mpegVersion][mpegLayer]; const bytesInSlot = BytesInSlot[mpegLayer]; const samplesPerFrame = sampleCoefficient * 8 * bytesInSlot; const frameLength = Math.floor(sampleCoefficient * bitRate / sampleRate + paddingBit) * bytesInSlot; if (chromeVersion$1 === null) { const userAgent = navigator.userAgent || ''; const result = userAgent.match(/Chrome\/(\d+)/i); chromeVersion$1 = result ? parseInt(result[1]) : 0; } const needChromeFix = !!chromeVersion$1 && chromeVersion$1 <= 87; if (needChromeFix && mpegLayer === 2 && bitRate >= 224000 && channelMode === 0) { // Work around bug in Chromium by setting channelMode to dual-channel (01) instead of stereo (00) data[offset + 3] = data[offset + 3] | 0x80; } return { sampleRate, channelCount, frameLength, samplesPerFrame }; } } function isHeaderPattern(data, offset) { return data[offset] === 0xff && (data[offset + 1] & 0xe0) === 0xe0 && (data[offset + 1] & 0x06) !== 0x00; } function isHeader(data, offset) { // Look for MPEG header | 1111 1111 | 111X XYZX | where X can be either 0 or 1 and Y or Z should be 1 // Layer bits (position 14 and 15) in header should be always different from 0 (Layer I or Layer II or Layer III) // More info http://www.mp3-tech.org/programmer/frame_header.html return offset + 1 < data.length && isHeaderPattern(data, offset); } function canParse(data, offset) { const headerSize = 4; return isHeaderPattern(data, offset) && headerSize <= data.length - offset; } function probe(data, offset) { // same as isHeader but we also check that MPEG frame follows last MPEG frame // or end of data is reached if (offset + 1 < data.length && isHeaderPattern(data, offset)) { // MPEG header Length const headerLength = 4; // MPEG frame Length const header = parseHeader(data, offset); let frameLength = headerLength; if (header != null && header.frameLength) { frameLength = header.frameLength; } const newOffset = offset + frameLength; return newOffset === data.length || isHeader(data, newOffset); } return false; } /** * AAC demuxer */ class AACDemuxer extends BaseAudioDemuxer { constructor(observer, config) { super(); this.observer = void 0; this.config = void 0; this.observer = observer; this.config = config; } resetInitSegment(initSegment, audioCodec, videoCodec, trackDuration) { super.resetInitSegment(initSegment, audioCodec, videoCodec, trackDuration); this._audioTrack = { container: 'audio/adts', type: 'audio', id: 2, pid: -1, sequenceNumber: 0, segmentCodec: 'aac', samples: [], manifestCodec: audioCodec, duration: trackDuration, inputTimeScale: 90000, dropped: 0 }; } // Source for probe info - https://wiki.multimedia.cx/index.php?title=ADTS static probe(data) { if (!data) { return false; } // Check for the ADTS sync word // Look for ADTS header | 1111 1111 | 1111 X00X | where X can be either 0 or 1 // Layer bits (position 14 and 15) in header should be always 0 for ADTS // More info https://wiki.multimedia.cx/index.php?title=ADTS const id3Data = getID3Data(data, 0); let offset = (id3Data == null ? void 0 : id3Data.length) || 0; if (probe(data, offset)) { return false; } for (let length = data.length; offset < length; offset++) { if (probe$1(data, offset)) { logger.log('ADTS sync word found !'); return true; } } return false; } canParse(data, offset) { return canParse$1(data, offset); } appendFrame(track, data, offset) { initTrackConfig(track, this.observer, data, offset, track.manifestCodec); const frame = appendFrame$1(track, data, offset, this.basePTS, this.frameIndex); if (frame && frame.missing === 0) { return frame; } } } const emsgSchemePattern = /\/emsg[-/]ID3/i; class MP4Demuxer { constructor(observer, config) { this.remainderData = null; this.timeOffset = 0; this.config = void 0; this.videoTrack = void 0; this.audioTrack = void 0; this.id3Track = void 0; this.txtTrack = void 0; this.config = config; } resetTimeStamp() {} resetInitSegment(initSegment, audioCodec, videoCodec, trackDuration) { const videoTrack = this.videoTrack = dummyTrack('video', 1); const audioTrack = this.audioTrack = dummyTrack('audio', 1); const captionTrack = this.txtTrack = dummyTrack('text', 1); this.id3Track = dummyTrack('id3', 1); this.timeOffset = 0; if (!(initSegment != null && initSegment.byteLength)) { return; } const initData = parseInitSegment(initSegment); if (initData.video) { const { id, timescale, codec } = initData.video; videoTrack.id = id; videoTrack.timescale = captionTrack.timescale = timescale; videoTrack.codec = codec; } if (initData.audio) { const { id, timescale, codec } = initData.audio; audioTrack.id = id; audioTrack.timescale = timescale; audioTrack.codec = codec; } captionTrack.id = RemuxerTrackIdConfig.text; videoTrack.sampleDuration = 0; videoTrack.duration = audioTrack.duration = trackDuration; } resetContiguity() { this.remainderData = null; } static probe(data) { return hasMoofData(data); } demux(data, timeOffset) { this.timeOffset = timeOffset; // Load all data into the avc track. The CMAF remuxer will look for the data in the samples object; the rest of the fields do not matter let videoSamples = data; const videoTrack = this.videoTrack; const textTrack = this.txtTrack; if (this.config.progressive) { // Split the bytestream into two ranges: one encompassing all data up until the start of the last moof, and everything else. // This is done to guarantee that we're sending valid data to MSE - when demuxing progressively, we have no guarantee // that the fetch loader gives us flush moof+mdat pairs. If we push jagged data to MSE, it will throw an exception. if (this.remainderData) { videoSamples = appendUint8Array(this.remainderData, data); } const segmentedData = segmentValidRange(videoSamples); this.remainderData = segmentedData.remainder; videoTrack.samples = segmentedData.valid || new Uint8Array(); } else { videoTrack.samples = videoSamples; } const id3Track = this.extractID3Track(videoTrack, timeOffset); textTrack.samples = parseSamples(timeOffset, videoTrack); return { videoTrack, audioTrack: this.audioTrack, id3Track, textTrack: this.txtTrack }; } flush() { const timeOffset = this.timeOffset; const videoTrack = this.videoTrack; const textTrack = this.txtTrack; videoTrack.samples = this.remainderData || new Uint8Array(); this.remainderData = null; const id3Track = this.extractID3Track(videoTrack, this.timeOffset); textTrack.samples = parseSamples(timeOffset, videoTrack); return { videoTrack, audioTrack: dummyTrack(), id3Track, textTrack: dummyTrack() }; } extractID3Track(videoTrack, timeOffset) { const id3Track = this.id3Track; if (videoTrack.samples.length) { const emsgs = findBox(videoTrack.samples, ['emsg']); if (emsgs) { emsgs.forEach(data => { const emsgInfo = parseEmsg(data); if (emsgSchemePattern.test(emsgInfo.schemeIdUri)) { const pts = isFiniteNumber(emsgInfo.presentationTime) ? emsgInfo.presentationTime / emsgInfo.timeScale : timeOffset + emsgInfo.presentationTimeDelta / emsgInfo.timeScale; let duration = emsgInfo.eventDuration === 0xffffffff ? Number.POSITIVE_INFINITY : emsgInfo.eventDuration / emsgInfo.timeScale; // Safari takes anything <= 0.001 seconds and maps it to Infinity if (duration <= 0.001) { duration = Number.POSITIVE_INFINITY; } const payload = emsgInfo.payload; id3Track.samples.push({ data: payload, len: payload.byteLength, dts: pts, pts: pts, type: MetadataSchema.emsg, duration: duration }); } }); } } return id3Track; } demuxSampleAes(data, keyData, timeOffset) { return Promise.reject(new Error('The MP4 demuxer does not support SAMPLE-AES decryption')); } destroy() {} } const getAudioBSID = (data, offset) => { // check the bsid to confirm ac-3 | ec-3 let bsid = 0; let numBits = 5; offset += numBits; const temp = new Uint32Array(1); // unsigned 32 bit for temporary storage const mask = new Uint32Array(1); // unsigned 32 bit mask value const byte = new Uint8Array(1); // unsigned 8 bit for temporary storage while (numBits > 0) { byte[0] = data[offset]; // read remaining bits, upto 8 bits at a time const bits = Math.min(numBits, 8); const shift = 8 - bits; mask[0] = 0xff000000 >>> 24 + shift << shift; temp[0] = (byte[0] & mask[0]) >> shift; bsid = !bsid ? temp[0] : bsid << bits | temp[0]; offset += 1; numBits -= bits; } return bsid; }; class BaseVideoParser { constructor() { this.VideoSample = null; } createVideoSample(key, pts, dts, debug) { return { key, frame: false, pts, dts, units: [], debug, length: 0 }; } getLastNalUnit(samples) { var _VideoSample; let VideoSample = this.VideoSample; let lastUnit; // try to fallback to previous sample if current one is empty if (!VideoSample || VideoSample.units.length === 0) { VideoSample = samples[samples.length - 1]; } if ((_VideoSample = VideoSample) != null && _VideoSample.units) { const units = VideoSample.units; lastUnit = units[units.length - 1]; } return lastUnit; } pushAccessUnit(VideoSample, videoTrack) { if (VideoSample.units.length && VideoSample.frame) { // if sample does not have PTS/DTS, patch with last sample PTS/DTS if (VideoSample.pts === undefined) { const samples = videoTrack.samples; const nbSamples = samples.length; if (nbSamples) { const lastSample = samples[nbSamples - 1]; VideoSample.pts = lastSample.pts; VideoSample.dts = lastSample.dts; } else { // dropping samples, no timestamp found videoTrack.dropped++; return; } } videoTrack.samples.push(VideoSample); } if (VideoSample.debug.length) { logger.log(VideoSample.pts + '/' + VideoSample.dts + ':' + VideoSample.debug); } } } /** * Parser for exponential Golomb codes, a variable-bitwidth number encoding scheme used by h264. */ class ExpGolomb { constructor(data) { this.data = void 0; this.bytesAvailable = void 0; this.word = void 0; this.bitsAvailable = void 0; this.data = data; // the number of bytes left to examine in this.data this.bytesAvailable = data.byteLength; // the current word being examined this.word = 0; // :uint // the number of bits left to examine in the current word this.bitsAvailable = 0; // :uint } // ():void loadWord() { const data = this.data; const bytesAvailable = this.bytesAvailable; const position = data.byteLength - bytesAvailable; const workingBytes = new Uint8Array(4); const availableBytes = Math.min(4, bytesAvailable); if (availableBytes === 0) { throw new Error('no bytes available'); } workingBytes.set(data.subarray(position, position + availableBytes)); this.word = new DataView(workingBytes.buffer).getUint32(0); // track the amount of this.data that has been processed this.bitsAvailable = availableBytes * 8; this.bytesAvailable -= availableBytes; } // (count:int):void skipBits(count) { let skipBytes; // :int count = Math.min(count, this.bytesAvailable * 8 + this.bitsAvailable); if (this.bitsAvailable > count) { this.word <<= count; this.bitsAvailable -= count; } else { count -= this.bitsAvailable; skipBytes = count >> 3; count -= skipBytes << 3; this.bytesAvailable -= skipBytes; this.loadWord(); this.word <<= count; this.bitsAvailable -= count; } } // (size:int):uint readBits(size) { let bits = Math.min(this.bitsAvailable, size); // :uint const valu = this.word >>> 32 - bits; // :uint if (size > 32) { logger.error('Cannot read more than 32 bits at a time'); } this.bitsAvailable -= bits; if (this.bitsAvailable > 0) { this.word <<= bits; } else if (this.bytesAvailable > 0) { this.loadWord(); } else { throw new Error('no bits available'); } bits = size - bits; if (bits > 0 && this.bitsAvailable) { return valu << bits | this.readBits(bits); } else { return valu; } } // ():uint skipLZ() { let leadingZeroCount; // :uint for (leadingZeroCount = 0; leadingZeroCount < this.bitsAvailable; ++leadingZeroCount) { if ((this.word & 0x80000000 >>> leadingZeroCount) !== 0) { // the first bit of working word is 1 this.word <<= leadingZeroCount; this.bitsAvailable -= leadingZeroCount; return leadingZeroCount; } } // we exhausted word and still have not found a 1 this.loadWord(); return leadingZeroCount + this.skipLZ(); } // ():void skipUEG() { this.skipBits(1 + this.skipLZ()); } // ():void skipEG() { this.skipBits(1 + this.skipLZ()); } // ():uint readUEG() { const clz = this.skipLZ(); // :uint return this.readBits(clz + 1) - 1; } // ():int readEG() { const valu = this.readUEG(); // :int if (0x01 & valu) { // the number is odd if the low order bit is set return 1 + valu >>> 1; // add 1 to make it even, and divide by 2 } else { return -1 * (valu >>> 1); // divide by two then make it negative } } // Some convenience functions // :Boolean readBoolean() { return this.readBits(1) === 1; } // ():int readUByte() { return this.readBits(8); } // ():int readUShort() { return this.readBits(16); } // ():int readUInt() { return this.readBits(32); } /** * Advance the ExpGolomb decoder past a scaling list. The scaling * list is optionally transmitted as part of a sequence parameter * set and is not relevant to transmuxing. * @param count the number of entries in this scaling list * @see Recommendation ITU-T H.264, Section 7.3.2.1.1.1 */ skipScalingList(count) { let lastScale = 8; let nextScale = 8; let deltaScale; for (let j = 0; j < count; j++) { if (nextScale !== 0) { deltaScale = this.readEG(); nextScale = (lastScale + deltaScale + 256) % 256; } lastScale = nextScale === 0 ? lastScale : nextScale; } } /** * Read a sequence parameter set and return some interesting video * properties. A sequence parameter set is the H264 metadata that * describes the properties of upcoming video frames. * @returns an object with configuration parsed from the * sequence parameter set, including the dimensions of the * associated video frames. */ readSPS() { let frameCropLeftOffset = 0; let frameCropRightOffset = 0; let frameCropTopOffset = 0; let frameCropBottomOffset = 0; let numRefFramesInPicOrderCntCycle; let scalingListCount; let i; const readUByte = this.readUByte.bind(this); const readBits = this.readBits.bind(this); const readUEG = this.readUEG.bind(this); const readBoolean = this.readBoolean.bind(this); const skipBits = this.skipBits.bind(this); const skipEG = this.skipEG.bind(this); const skipUEG = this.skipUEG.bind(this); const skipScalingList = this.skipScalingList.bind(this); readUByte(); const profileIdc = readUByte(); // profile_idc readBits(5); // profileCompat constraint_set[0-4]_flag, u(5) skipBits(3); // reserved_zero_3bits u(3), readUByte(); // level_idc u(8) skipUEG(); // seq_parameter_set_id // some profiles have more optional data we don't need if (profileIdc === 100 || profileIdc === 110 || profileIdc === 122 || profileIdc === 244 || profileIdc === 44 || profileIdc === 83 || profileIdc === 86 || profileIdc === 118 || profileIdc === 128) { const chromaFormatIdc = readUEG(); if (chromaFormatIdc === 3) { skipBits(1); } // separate_colour_plane_flag skipUEG(); // bit_depth_luma_minus8 skipUEG(); // bit_depth_chroma_minus8 skipBits(1); // qpprime_y_zero_transform_bypass_flag if (readBoolean()) { // seq_scaling_matrix_present_flag scalingListCount = chromaFormatIdc !== 3 ? 8 : 12; for (i = 0; i < scalingListCount; i++) { if (readBoolean()) { // seq_scaling_list_present_flag[ i ] if (i < 6) { skipScalingList(16); } else { skipScalingList(64); } } } } } skipUEG(); // log2_max_frame_num_minus4 const picOrderCntType = readUEG(); if (picOrderCntType === 0) { readUEG(); // log2_max_pic_order_cnt_lsb_minus4 } else if (picOrderCntType === 1) { skipBits(1); // delta_pic_order_always_zero_flag skipEG(); // offset_for_non_ref_pic skipEG(); // offset_for_top_to_bottom_field numRefFramesInPicOrderCntCycle = readUEG(); for (i = 0; i < numRefFramesInPicOrderCntCycle; i++) { skipEG(); } // offset_for_ref_frame[ i ] } skipUEG(); // max_num_ref_frames skipBits(1); // gaps_in_frame_num_value_allowed_flag const picWidthInMbsMinus1 = readUEG(); const picHeightInMapUnitsMinus1 = readUEG(); const frameMbsOnlyFlag = readBits(1); if (frameMbsOnlyFlag === 0) { skipBits(1); } // mb_adaptive_frame_field_flag skipBits(1); // direct_8x8_inference_flag if (readBoolean()) { // frame_cropping_flag frameCropLeftOffset = readUEG(); frameCropRightOffset = readUEG(); frameCropTopOffset = readUEG(); frameCropBottomOffset = readUEG(); } let pixelRatio = [1, 1]; if (readBoolean()) { // vui_parameters_present_flag if (readBoolean()) { // aspect_ratio_info_present_flag const aspectRatioIdc = readUByte(); switch (aspectRatioIdc) { case 1: pixelRatio = [1, 1]; break; case 2: pixelRatio = [12, 11]; break; case 3: pixelRatio = [10, 11]; break; case 4: pixelRatio = [16, 11]; break; case 5: pixelRatio = [40, 33]; break; case 6: pixelRatio = [24, 11]; break; case 7: pixelRatio = [20, 11]; break; case 8: pixelRatio = [32, 11]; break; case 9: pixelRatio = [80, 33]; break; case 10: pixelRatio = [18, 11]; break; case 11: pixelRatio = [15, 11]; break; case 12: pixelRatio = [64, 33]; break; case 13: pixelRatio = [160, 99]; break; case 14: pixelRatio = [4, 3]; break; case 15: pixelRatio = [3, 2]; break; case 16: pixelRatio = [2, 1]; break; case 255: { pixelRatio = [readUByte() << 8 | readUByte(), readUByte() << 8 | readUByte()]; break; } } } } return { width: Math.ceil((picWidthInMbsMinus1 + 1) * 16 - frameCropLeftOffset * 2 - frameCropRightOffset * 2), height: (2 - frameMbsOnlyFlag) * (picHeightInMapUnitsMinus1 + 1) * 16 - (frameMbsOnlyFlag ? 2 : 4) * (frameCropTopOffset + frameCropBottomOffset), pixelRatio: pixelRatio }; } readSliceType() { // skip NALu type this.readUByte(); // discard first_mb_in_slice this.readUEG(); // return slice_type return this.readUEG(); } } class AvcVideoParser extends BaseVideoParser { parseAVCPES(track, textTrack, pes, last, duration) { const units = this.parseAVCNALu(track, pes.data); let VideoSample = this.VideoSample; let push; let spsfound = false; // free pes.data to save up some memory pes.data = null; // if new NAL units found and last sample still there, let's push ... // this helps parsing streams with missing AUD (only do this if AUD never found) if (VideoSample && units.length && !track.audFound) { this.pushAccessUnit(VideoSample, track); VideoSample = this.VideoSample = this.createVideoSample(false, pes.pts, pes.dts, ''); } units.forEach(unit => { var _VideoSample2; switch (unit.type) { // NDR case 1: { let iskey = false; push = true; const data = unit.data; // only check slice type to detect KF in case SPS found in same packet (any keyframe is preceded by SPS ...) if (spsfound && data.length > 4) { // retrieve slice type by parsing beginning of NAL unit (follow H264 spec, slice_header definition) to detect keyframe embedded in NDR const sliceType = new ExpGolomb(data).readSliceType(); // 2 : I slice, 4 : SI slice, 7 : I slice, 9: SI slice // SI slice : A slice that is coded using intra prediction only and using quantisation of the prediction samples. // An SI slice can be coded such that its decoded samples can be constructed identically to an SP slice. // I slice: A slice that is not an SI slice that is decoded using intra prediction only. // if (sliceType === 2 || sliceType === 7) { if (sliceType === 2 || sliceType === 4 || sliceType === 7 || sliceType === 9) { iskey = true; } } if (iskey) { var _VideoSample; // if we have non-keyframe data already, that cannot belong to the same frame as a keyframe, so force a push if ((_VideoSample = VideoSample) != null && _VideoSample.frame && !VideoSample.key) { this.pushAccessUnit(VideoSample, track); VideoSample = this.VideoSample = null; } } if (!VideoSample) { VideoSample = this.VideoSample = this.createVideoSample(true, pes.pts, pes.dts, ''); } VideoSample.frame = true; VideoSample.key = iskey; break; // IDR } case 5: push = true; // handle PES not starting with AUD // if we have frame data already, that cannot belong to the same frame, so force a push if ((_VideoSample2 = VideoSample) != null && _VideoSample2.frame && !VideoSample.key) { this.pushAccessUnit(VideoSample, track); VideoSample = this.VideoSample = null; } if (!VideoSample) { VideoSample = this.VideoSample = this.createVideoSample(true, pes.pts, pes.dts, ''); } VideoSample.key = true; VideoSample.frame = true; break; // SEI case 6: { push = true; parseSEIMessageFromNALu(unit.data, 1, pes.pts, textTrack.samples); break; // SPS } case 7: { var _track$pixelRatio, _track$pixelRatio2; push = true; spsfound = true; const sps = unit.data; const expGolombDecoder = new ExpGolomb(sps); const config = expGolombDecoder.readSPS(); if (!track.sps || track.width !== config.width || track.height !== config.height || ((_track$pixelRatio = track.pixelRatio) == null ? void 0 : _track$pixelRatio[0]) !== config.pixelRatio[0] || ((_track$pixelRatio2 = track.pixelRatio) == null ? void 0 : _track$pixelRatio2[1]) !== config.pixelRatio[1]) { track.width = config.width; track.height = config.height; track.pixelRatio = config.pixelRatio; track.sps = [sps]; track.duration = duration; const codecarray = sps.subarray(1, 4); let codecstring = 'avc1.'; for (let i = 0; i < 3; i++) { let h = codecarray[i].toString(16); if (h.length < 2) { h = '0' + h; } codecstring += h; } track.codec = codecstring; } break; } // PPS case 8: push = true; track.pps = [unit.data]; break; // AUD case 9: push = true; track.audFound = true; if (VideoSample) { this.pushAccessUnit(VideoSample, track); } VideoSample = this.VideoSample = this.createVideoSample(false, pes.pts, pes.dts, ''); break; // Filler Data case 12: push = true; break; default: push = false; if (VideoSample) { VideoSample.debug += 'unknown NAL ' + unit.type + ' '; } break; } if (VideoSample && push) { const units = VideoSample.units; units.push(unit); } }); // if last PES packet, push samples if (last && VideoSample) { this.pushAccessUnit(VideoSample, track); this.VideoSample = null; } } parseAVCNALu(track, array) { const len = array.byteLength; let state = track.naluState || 0; const lastState = state; const units = []; let i = 0; let value; let overflow; let unitType; let lastUnitStart = -1; let lastUnitType = 0; // logger.log('PES:' + Hex.hexDump(array)); if (state === -1) { // special use case where we found 3 or 4-byte start codes exactly at the end of previous PES packet lastUnitStart = 0; // NALu type is value read from offset 0 lastUnitType = array[0] & 0x1f; state = 0; i = 1; } while (i < len) { value = array[i++]; // optimization. state 0 and 1 are the predominant case. let's handle them outside of the switch/case if (!state) { state = value ? 0 : 1; continue; } if (state === 1) { state = value ? 0 : 2; continue; } // here we have state either equal to 2 or 3 if (!value) { state = 3; } else if (value === 1) { overflow = i - state - 1; if (lastUnitStart >= 0) { const unit = { data: array.subarray(lastUnitStart, overflow), type: lastUnitType }; // logger.log('pushing NALU, type/size:' + unit.type + '/' + unit.data.byteLength); units.push(unit); } else { // lastUnitStart is undefined => this is the first start code found in this PES packet // first check if start code delimiter is overlapping between 2 PES packets, // ie it started in last packet (lastState not zero) // and ended at the beginning of this PES packet (i <= 4 - lastState) const lastUnit = this.getLastNalUnit(track.samples); if (lastUnit) { if (lastState && i <= 4 - lastState) { // start delimiter overlapping between PES packets // strip start delimiter bytes from the end of last NAL unit // check if lastUnit had a state different from zero if (lastUnit.state) { // strip last bytes lastUnit.data = lastUnit.data.subarray(0, lastUnit.data.byteLength - lastState); } } // If NAL units are not starting right at the beginning of the PES packet, push preceding data into previous NAL unit. if (overflow > 0) { // logger.log('first NALU found with overflow:' + overflow); lastUnit.data = appendUint8Array(lastUnit.data, array.subarray(0, overflow)); lastUnit.state = 0; } } } // check if we can read unit type if (i < len) { unitType = array[i] & 0x1f; // logger.log('find NALU @ offset:' + i + ',type:' + unitType); lastUnitStart = i; lastUnitType = unitType; state = 0; } else { // not enough byte to read unit type. let's read it on next PES parsing state = -1; } } else { state = 0; } } if (lastUnitStart >= 0 && state >= 0) { const unit = { data: array.subarray(lastUnitStart, len), type: lastUnitType, state: state }; units.push(unit); // logger.log('pushing NALU, type/size/state:' + unit.type + '/' + unit.data.byteLength + '/' + state); } // no NALu found if (units.length === 0) { // append pes.data to previous NAL unit const lastUnit = this.getLastNalUnit(track.samples); if (lastUnit) { lastUnit.data = appendUint8Array(lastUnit.data, array); } } track.naluState = state; return units; } } /** * SAMPLE-AES decrypter */ class SampleAesDecrypter { constructor(observer, config, keyData) { this.keyData = void 0; this.decrypter = void 0; this.keyData = keyData; this.decrypter = new Decrypter(config, { removePKCS7Padding: false }); } decryptBuffer(encryptedData) { return this.decrypter.decrypt(encryptedData, this.keyData.key.buffer, this.keyData.iv.buffer, DecrypterAesMode.cbc); } // AAC - encrypt all full 16 bytes blocks starting from offset 16 decryptAacSample(samples, sampleIndex, callback) { const curUnit = samples[sampleIndex].unit; if (curUnit.length <= 16) { // No encrypted portion in this sample (first 16 bytes is not // encrypted, see https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/HLS_Sample_Encryption/Encryption/Encryption.html), return; } const encryptedData = curUnit.subarray(16, curUnit.length - curUnit.length % 16); const encryptedBuffer = encryptedData.buffer.slice(encryptedData.byteOffset, encryptedData.byteOffset + encryptedData.length); this.decryptBuffer(encryptedBuffer).then(decryptedBuffer => { const decryptedData = new Uint8Array(decryptedBuffer); curUnit.set(decryptedData, 16); if (!this.decrypter.isSync()) { this.decryptAacSamples(samples, sampleIndex + 1, callback); } }); } decryptAacSamples(samples, sampleIndex, callback) { for (;; sampleIndex++) { if (sampleIndex >= samples.length) { callback(); return; } if (samples[sampleIndex].unit.length < 32) { continue; } this.decryptAacSample(samples, sampleIndex, callback); if (!this.decrypter.isSync()) { return; } } } // AVC - encrypt one 16 bytes block out of ten, starting from offset 32 getAvcEncryptedData(decodedData) { const encryptedDataLen = Math.floor((decodedData.length - 48) / 160) * 16 + 16; const encryptedData = new Int8Array(encryptedDataLen); let outputPos = 0; for (let inputPos = 32; inputPos < decodedData.length - 16; inputPos += 160, outputPos += 16) { encryptedData.set(decodedData.subarray(inputPos, inputPos + 16), outputPos); } return encryptedData; } getAvcDecryptedUnit(decodedData, decryptedData) { const uint8DecryptedData = new Uint8Array(decryptedData); let inputPos = 0; for (let outputPos = 32; outputPos < decodedData.length - 16; outputPos += 160, inputPos += 16) { decodedData.set(uint8DecryptedData.subarray(inputPos, inputPos + 16), outputPos); } return decodedData; } decryptAvcSample(samples, sampleIndex, unitIndex, callback, curUnit) { const decodedData = discardEPB(curUnit.data); const encryptedData = this.getAvcEncryptedData(decodedData); this.decryptBuffer(encryptedData.buffer).then(decryptedBuffer => { curUnit.data = this.getAvcDecryptedUnit(decodedData, decryptedBuffer); if (!this.decrypter.isSync()) { this.decryptAvcSamples(samples, sampleIndex, unitIndex + 1, callback); } }); } decryptAvcSamples(samples, sampleIndex, unitIndex, callback) { if (samples instanceof Uint8Array) { throw new Error('Cannot decrypt samples of type Uint8Array'); } for (;; sampleIndex++, unitIndex = 0) { if (sampleIndex >= samples.length) { callback(); return; } const curUnits = samples[sampleIndex].units; for (;; unitIndex++) { if (unitIndex >= curUnits.length) { break; } const curUnit = curUnits[unitIndex]; if (curUnit.data.length <= 48 || curUnit.type !== 1 && curUnit.type !== 5) { continue; } this.decryptAvcSample(samples, sampleIndex, unitIndex, callback, curUnit); if (!this.decrypter.isSync()) { return; } } } } } const PACKET_LENGTH = 188; class TSDemuxer { constructor(observer, config, typeSupported) { this.observer = void 0; this.config = void 0; this.typeSupported = void 0; this.sampleAes = null; this.pmtParsed = false; this.audioCodec = void 0; this.videoCodec = void 0; this._duration = 0; this._pmtId = -1; this._videoTrack = void 0; this._audioTrack = void 0; this._id3Track = void 0; this._txtTrack = void 0; this.aacOverFlow = null; this.remainderData = null; this.videoParser = void 0; this.observer = observer; this.config = config; this.typeSupported = typeSupported; this.videoParser = new AvcVideoParser(); } static probe(data) { const syncOffset = TSDemuxer.syncOffset(data); if (syncOffset > 0) { logger.warn(`MPEG2-TS detected but first sync word found @ offset ${syncOffset}`); } return syncOffset !== -1; } static syncOffset(data) { const length = data.length; let scanwindow = Math.min(PACKET_LENGTH * 5, length - PACKET_LENGTH) + 1; let i = 0; while (i < scanwindow) { // a TS init segment should contain at least 2 TS packets: PAT and PMT, each starting with 0x47 let foundPat = false; let packetStart = -1; let tsPackets = 0; for (let j = i; j < length; j += PACKET_LENGTH) { if (data[j] === 0x47 && (length - j === PACKET_LENGTH || data[j + PACKET_LENGTH] === 0x47)) { tsPackets++; if (packetStart === -1) { packetStart = j; // First sync word found at offset, increase scan length (#5251) if (packetStart !== 0) { scanwindow = Math.min(packetStart + PACKET_LENGTH * 99, data.length - PACKET_LENGTH) + 1; } } if (!foundPat) { foundPat = parsePID(data, j) === 0; } // Sync word found at 0 with 3 packets, or found at offset least 2 packets up to scanwindow (#5501) if (foundPat && tsPackets > 1 && (packetStart === 0 && tsPackets > 2 || j + PACKET_LENGTH > scanwindow)) { return packetStart; } } else if (tsPackets) { // Exit if sync word found, but does not contain contiguous packets return -1; } else { break; } } i++; } return -1; } /** * Creates a track model internal to demuxer used to drive remuxing input */ static createTrack(type, duration) { return { container: type === 'video' || type === 'audio' ? 'video/mp2t' : undefined, type, id: RemuxerTrackIdConfig[type], pid: -1, inputTimeScale: 90000, sequenceNumber: 0, samples: [], dropped: 0, duration: type === 'audio' ? duration : undefined }; } /** * Initializes a new init segment on the demuxer/remuxer interface. Needed for discontinuities/track-switches (or at stream start) * Resets all internal track instances of the demuxer. */ resetInitSegment(initSegment, audioCodec, videoCodec, trackDuration) { this.pmtParsed = false; this._pmtId = -1; this._videoTrack = TSDemuxer.createTrack('video'); this._audioTrack = TSDemuxer.createTrack('audio', trackDuration); this._id3Track = TSDemuxer.createTrack('id3'); this._txtTrack = TSDemuxer.createTrack('text'); this._audioTrack.segmentCodec = 'aac'; // flush any partial content this.aacOverFlow = null; this.remainderData = null; this.audioCodec = audioCodec; this.videoCodec = videoCodec; this._duration = trackDuration; } resetTimeStamp() {} resetContiguity() { const { _audioTrack, _videoTrack, _id3Track } = this; if (_audioTrack) { _audioTrack.pesData = null; } if (_videoTrack) { _videoTrack.pesData = null; } if (_id3Track) { _id3Track.pesData = null; } this.aacOverFlow = null; this.remainderData = null; } demux(data, timeOffset, isSampleAes = false, flush = false) { if (!isSampleAes) { this.sampleAes = null; } let pes; const videoTrack = this._videoTrack; const audioTrack = this._audioTrack; const id3Track = this._id3Track; const textTrack = this._txtTrack; let videoPid = videoTrack.pid; let videoData = videoTrack.pesData; let audioPid = audioTrack.pid; let id3Pid = id3Track.pid; let audioData = audioTrack.pesData; let id3Data = id3Track.pesData; let unknownPID = null; let pmtParsed = this.pmtParsed; let pmtId = this._pmtId; let len = data.length; if (this.remainderData) { data = appendUint8Array(this.remainderData, data); len = data.length; this.remainderData = null; } if (len < PACKET_LENGTH && !flush) { this.remainderData = data; return { audioTrack, videoTrack, id3Track, textTrack }; } const syncOffset = Math.max(0, TSDemuxer.syncOffset(data)); len -= (len - syncOffset) % PACKET_LENGTH; if (len < data.byteLength && !flush) { this.remainderData = new Uint8Array(data.buffer, len, data.buffer.byteLength - len); } // loop through TS packets let tsPacketErrors = 0; for (let start = syncOffset; start < len; start += PACKET_LENGTH) { if (data[start] === 0x47) { const stt = !!(data[start + 1] & 0x40); const pid = parsePID(data, start); const atf = (data[start + 3] & 0x30) >> 4; // if an adaption field is present, its length is specified by the fifth byte of the TS packet header. let offset; if (atf > 1) { offset = start + 5 + data[start + 4]; // continue if there is only adaptation field if (offset === start + PACKET_LENGTH) { continue; } } else { offset = start + 4; } switch (pid) { case videoPid: if (stt) { if (videoData && (pes = parsePES(videoData))) { this.videoParser.parseAVCPES(videoTrack, textTrack, pes, false, this._duration); } videoData = { data: [], size: 0 }; } if (videoData) { videoData.data.push(data.subarray(offset, start + PACKET_LENGTH)); videoData.size += start + PACKET_LENGTH - offset; } break; case audioPid: if (stt) { if (audioData && (pes = parsePES(audioData))) { switch (audioTrack.segmentCodec) { case 'aac': this.parseAACPES(audioTrack, pes); break; case 'mp3': this.parseMPEGPES(audioTrack, pes); break; } } audioData = { data: [], size: 0 }; } if (audioData) { audioData.data.push(data.subarray(offset, start + PACKET_LENGTH)); audioData.size += start + PACKET_LENGTH - offset; } break; case id3Pid: if (stt) { if (id3Data && (pes = parsePES(id3Data))) { this.parseID3PES(id3Track, pes); } id3Data = { data: [], size: 0 }; } if (id3Data) { id3Data.data.push(data.subarray(offset, start + PACKET_LENGTH)); id3Data.size += start + PACKET_LENGTH - offset; } break; case 0: if (stt) { offset += data[offset] + 1; } pmtId = this._pmtId = parsePAT(data, offset); // logger.log('PMT PID:' + this._pmtId); break; case pmtId: { if (stt) { offset += data[offset] + 1; } const parsedPIDs = parsePMT(data, offset, this.typeSupported, isSampleAes); // only update track id if track PID found while parsing PMT // this is to avoid resetting the PID to -1 in case // track PID transiently disappears from the stream // this could happen in case of transient missing audio samples for example // NOTE this is only the PID of the track as found in TS, // but we are not using this for MP4 track IDs. videoPid = parsedPIDs.videoPid; if (videoPid > 0) { videoTrack.pid = videoPid; videoTrack.segmentCodec = parsedPIDs.segmentVideoCodec; } audioPid = parsedPIDs.audioPid; if (audioPid > 0) { audioTrack.pid = audioPid; audioTrack.segmentCodec = parsedPIDs.segmentAudioCodec; } id3Pid = parsedPIDs.id3Pid; if (id3Pid > 0) { id3Track.pid = id3Pid; } if (unknownPID !== null && !pmtParsed) { logger.warn(`MPEG-TS PMT found at ${start} after unknown PID '${unknownPID}'. Backtracking to sync byte @${syncOffset} to parse all TS packets.`); unknownPID = null; // we set it to -188, the += 188 in the for loop will reset start to 0 start = syncOffset - 188; } pmtParsed = this.pmtParsed = true; break; } case 0x11: case 0x1fff: break; default: unknownPID = pid; break; } } else { tsPacketErrors++; } } if (tsPacketErrors > 0) { const error = new Error(`Found ${tsPacketErrors} TS packet/s that do not start with 0x47`); this.observer.emit(Events.ERROR, Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_PARSING_ERROR, fatal: false, error, reason: error.message }); } videoTrack.pesData = videoData; audioTrack.pesData = audioData; id3Track.pesData = id3Data; const demuxResult = { audioTrack, videoTrack, id3Track, textTrack }; if (flush) { this.extractRemainingSamples(demuxResult); } return demuxResult; } flush() { const { remainderData } = this; this.remainderData = null; let result; if (remainderData) { result = this.demux(remainderData, -1, false, true); } else { result = { videoTrack: this._videoTrack, audioTrack: this._audioTrack, id3Track: this._id3Track, textTrack: this._txtTrack }; } this.extractRemainingSamples(result); if (this.sampleAes) { return this.decrypt(result, this.sampleAes); } return result; } extractRemainingSamples(demuxResult) { const { audioTrack, videoTrack, id3Track, textTrack } = demuxResult; const videoData = videoTrack.pesData; const audioData = audioTrack.pesData; const id3Data = id3Track.pesData; // try to parse last PES packets let pes; if (videoData && (pes = parsePES(videoData))) { this.videoParser.parseAVCPES(videoTrack, textTrack, pes, true, this._duration); videoTrack.pesData = null; } else { // either avcData null or PES truncated, keep it for next frag parsing videoTrack.pesData = videoData; } if (audioData && (pes = parsePES(audioData))) { switch (audioTrack.segmentCodec) { case 'aac': this.parseAACPES(audioTrack, pes); break; case 'mp3': this.parseMPEGPES(audioTrack, pes); break; } audioTrack.pesData = null; } else { if (audioData != null && audioData.size) { logger.log('last AAC PES packet truncated,might overlap between fragments'); } // either audioData null or PES truncated, keep it for next frag parsing audioTrack.pesData = audioData; } if (id3Data && (pes = parsePES(id3Data))) { this.parseID3PES(id3Track, pes); id3Track.pesData = null; } else { // either id3Data null or PES truncated, keep it for next frag parsing id3Track.pesData = id3Data; } } demuxSampleAes(data, keyData, timeOffset) { const demuxResult = this.demux(data, timeOffset, true, !this.config.progressive); const sampleAes = this.sampleAes = new SampleAesDecrypter(this.observer, this.config, keyData); return this.decrypt(demuxResult, sampleAes); } decrypt(demuxResult, sampleAes) { return new Promise(resolve => { const { audioTrack, videoTrack } = demuxResult; if (audioTrack.samples && audioTrack.segmentCodec === 'aac') { sampleAes.decryptAacSamples(audioTrack.samples, 0, () => { if (videoTrack.samples) { sampleAes.decryptAvcSamples(videoTrack.samples, 0, 0, () => { resolve(demuxResult); }); } else { resolve(demuxResult); } }); } else if (videoTrack.samples) { sampleAes.decryptAvcSamples(videoTrack.samples, 0, 0, () => { resolve(demuxResult); }); } }); } destroy() { this._duration = 0; } parseAACPES(track, pes) { let startOffset = 0; const aacOverFlow = this.aacOverFlow; let data = pes.data; if (aacOverFlow) { this.aacOverFlow = null; const frameMissingBytes = aacOverFlow.missing; const sampleLength = aacOverFlow.sample.unit.byteLength; // logger.log(`AAC: append overflowing ${sampleLength} bytes to beginning of new PES`); if (frameMissingBytes === -1) { data = appendUint8Array(aacOverFlow.sample.unit, data); } else { const frameOverflowBytes = sampleLength - frameMissingBytes; aacOverFlow.sample.unit.set(data.subarray(0, frameMissingBytes), frameOverflowBytes); track.samples.push(aacOverFlow.sample); startOffset = aacOverFlow.missing; } } // look for ADTS header (0xFFFx) let offset; let len; for (offset = startOffset, len = data.length; offset < len - 1; offset++) { if (isHeader$1(data, offset)) { break; } } // if ADTS header does not start straight from the beginning of the PES payload, raise an error if (offset !== startOffset) { let reason; const recoverable = offset < len - 1; if (recoverable) { reason = `AAC PES did not start with ADTS header,offset:${offset}`; } else { reason = 'No ADTS header found in AAC PES'; } const error = new Error(reason); logger.warn(`parsing error: ${reason}`); this.observer.emit(Events.ERROR, Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_PARSING_ERROR, fatal: false, levelRetry: recoverable, error, reason }); if (!recoverable) { return; } } initTrackConfig(track, this.observer, data, offset, this.audioCodec); let pts; if (pes.pts !== undefined) { pts = pes.pts; } else if (aacOverFlow) { // if last AAC frame is overflowing, we should ensure timestamps are contiguous: // first sample PTS should be equal to last sample PTS + frameDuration const frameDuration = getFrameDuration(track.samplerate); pts = aacOverFlow.sample.pts + frameDuration; } else { logger.warn('[tsdemuxer]: AAC PES unknown PTS'); return; } // scan for aac samples let frameIndex = 0; let frame; while (offset < len) { frame = appendFrame$1(track, data, offset, pts, frameIndex); offset += frame.length; if (!frame.missing) { frameIndex++; for (; offset < len - 1; offset++) { if (isHeader$1(data, offset)) { break; } } } else { this.aacOverFlow = frame; break; } } } parseMPEGPES(track, pes) { const data = pes.data; const length = data.length; let frameIndex = 0; let offset = 0; const pts = pes.pts; if (pts === undefined) { logger.warn('[tsdemuxer]: MPEG PES unknown PTS'); return; } while (offset < length) { if (isHeader(data, offset)) { const frame = appendFrame(track, data, offset, pts, frameIndex); if (frame) { offset += frame.length; frameIndex++; } else { // logger.log('Unable to parse Mpeg audio frame'); break; } } else { // nothing found, keep looking offset++; } } } parseAC3PES(track, pes) { } parseID3PES(id3Track, pes) { if (pes.pts === undefined) { logger.warn('[tsdemuxer]: ID3 PES unknown PTS'); return; } const id3Sample = _extends({}, pes, { type: this._videoTrack ? MetadataSchema.emsg : MetadataSchema.audioId3, duration: Number.POSITIVE_INFINITY }); id3Track.samples.push(id3Sample); } } function parsePID(data, offset) { // pid is a 13-bit field starting at the last bit of TS[1] return ((data[offset + 1] & 0x1f) << 8) + data[offset + 2]; } function parsePAT(data, offset) { // skip the PSI header and parse the first PMT entry return (data[offset + 10] & 0x1f) << 8 | data[offset + 11]; } function parsePMT(data, offset, typeSupported, isSampleAes) { const result = { audioPid: -1, videoPid: -1, id3Pid: -1, segmentVideoCodec: 'avc', segmentAudioCodec: 'aac' }; const sectionLength = (data[offset + 1] & 0x0f) << 8 | data[offset + 2]; const tableEnd = offset + 3 + sectionLength - 4; // to determine where the table is, we have to figure out how // long the program info descriptors are const programInfoLength = (data[offset + 10] & 0x0f) << 8 | data[offset + 11]; // advance the offset to the first entry in the mapping table offset += 12 + programInfoLength; while (offset < tableEnd) { const pid = parsePID(data, offset); const esInfoLength = (data[offset + 3] & 0x0f) << 8 | data[offset + 4]; switch (data[offset]) { case 0xcf: // SAMPLE-AES AAC if (!isSampleAes) { logEncryptedSamplesFoundInUnencryptedStream('ADTS AAC'); break; } /* falls through */ case 0x0f: // ISO/IEC 13818-7 ADTS AAC (MPEG-2 lower bit-rate audio) // logger.log('AAC PID:' + pid); if (result.audioPid === -1) { result.audioPid = pid; } break; // Packetized metadata (ID3) case 0x15: // logger.log('ID3 PID:' + pid); if (result.id3Pid === -1) { result.id3Pid = pid; } break; case 0xdb: // SAMPLE-AES AVC if (!isSampleAes) { logEncryptedSamplesFoundInUnencryptedStream('H.264'); break; } /* falls through */ case 0x1b: // ITU-T Rec. H.264 and ISO/IEC 14496-10 (lower bit-rate video) // logger.log('AVC PID:' + pid); if (result.videoPid === -1) { result.videoPid = pid; result.segmentVideoCodec = 'avc'; } break; // ISO/IEC 11172-3 (MPEG-1 audio) // or ISO/IEC 13818-3 (MPEG-2 halved sample rate audio) case 0x03: case 0x04: // logger.log('MPEG PID:' + pid); if (!typeSupported.mpeg && !typeSupported.mp3) { logger.log('MPEG audio found, not supported in this browser'); } else if (result.audioPid === -1) { result.audioPid = pid; result.segmentAudioCodec = 'mp3'; } break; case 0xc1: // SAMPLE-AES AC3 if (!isSampleAes) { logEncryptedSamplesFoundInUnencryptedStream('AC-3'); break; } /* falls through */ case 0x81: { logger.warn('AC-3 in M2TS support not included in build'); } break; case 0x06: // stream_type 6 can mean a lot of different things in case of DVB. // We need to look at the descriptors. Right now, we're only interested // in AC-3 audio, so we do the descriptor parsing only when we don't have // an audio PID yet. if (result.audioPid === -1 && esInfoLength > 0) { let parsePos = offset + 5; let remaining = esInfoLength; while (remaining > 2) { const descriptorId = data[parsePos]; switch (descriptorId) { case 0x6a: // DVB Descriptor for AC-3 { logger.warn('AC-3 in M2TS support not included in build'); } break; } const descriptorLen = data[parsePos + 1] + 2; parsePos += descriptorLen; remaining -= descriptorLen; } } break; case 0xc2: // SAMPLE-AES EC3 /* falls through */ case 0x87: logger.warn('Unsupported EC-3 in M2TS found'); break; case 0x24: logger.warn('Unsupported HEVC in M2TS found'); break; } // move to the next table entry // skip past the elementary stream descriptors, if present offset += esInfoLength + 5; } return result; } function logEncryptedSamplesFoundInUnencryptedStream(type) { logger.log(`${type} with AES-128-CBC encryption found in unencrypted stream`); } function parsePES(stream) { let i = 0; let frag; let pesLen; let pesHdrLen; let pesPts; let pesDts; const data = stream.data; // safety check if (!stream || stream.size === 0) { return null; } // we might need up to 19 bytes to read PES header // if first chunk of data is less than 19 bytes, let's merge it with following ones until we get 19 bytes // usually only one merge is needed (and this is rare ...) while (data[0].length < 19 && data.length > 1) { data[0] = appendUint8Array(data[0], data[1]); data.splice(1, 1); } // retrieve PTS/DTS from first fragment frag = data[0]; const pesPrefix = (frag[0] << 16) + (frag[1] << 8) + frag[2]; if (pesPrefix === 1) { pesLen = (frag[4] << 8) + frag[5]; // if PES parsed length is not zero and greater than total received length, stop parsing. PES might be truncated // minus 6 : PES header size if (pesLen && pesLen > stream.size - 6) { return null; } const pesFlags = frag[7]; if (pesFlags & 0xc0) { /* PES header described here : http://dvd.sourceforge.net/dvdinfo/pes-hdr.html as PTS / DTS is 33 bit we cannot use bitwise operator in JS, as Bitwise operators treat their operands as a sequence of 32 bits */ pesPts = (frag[9] & 0x0e) * 536870912 + // 1 << 29 (frag[10] & 0xff) * 4194304 + // 1 << 22 (frag[11] & 0xfe) * 16384 + // 1 << 14 (frag[12] & 0xff) * 128 + // 1 << 7 (frag[13] & 0xfe) / 2; if (pesFlags & 0x40) { pesDts = (frag[14] & 0x0e) * 536870912 + // 1 << 29 (frag[15] & 0xff) * 4194304 + // 1 << 22 (frag[16] & 0xfe) * 16384 + // 1 << 14 (frag[17] & 0xff) * 128 + // 1 << 7 (frag[18] & 0xfe) / 2; if (pesPts - pesDts > 60 * 90000) { logger.warn(`${Math.round((pesPts - pesDts) / 90000)}s delta between PTS and DTS, align them`); pesPts = pesDts; } } else { pesDts = pesPts; } } pesHdrLen = frag[8]; // 9 bytes : 6 bytes for PES header + 3 bytes for PES extension let payloadStartOffset = pesHdrLen + 9; if (stream.size <= payloadStartOffset) { return null; } stream.size -= payloadStartOffset; // reassemble PES packet const pesData = new Uint8Array(stream.size); for (let j = 0, dataLen = data.length; j < dataLen; j++) { frag = data[j]; let len = frag.byteLength; if (payloadStartOffset) { if (payloadStartOffset > len) { // trim full frag if PES header bigger than frag payloadStartOffset -= len; continue; } else { // trim partial frag if PES header smaller than frag frag = frag.subarray(payloadStartOffset); len -= payloadStartOffset; payloadStartOffset = 0; } } pesData.set(frag, i); i += len; } if (pesLen) { // payload size : remove PES header + PES extension pesLen -= pesHdrLen + 3; } return { data: pesData, pts: pesPts, dts: pesDts, len: pesLen }; } return null; } /** * MP3 demuxer */ class MP3Demuxer extends BaseAudioDemuxer { resetInitSegment(initSegment, audioCodec, videoCodec, trackDuration) { super.resetInitSegment(initSegment, audioCodec, videoCodec, trackDuration); this._audioTrack = { container: 'audio/mpeg', type: 'audio', id: 2, pid: -1, sequenceNumber: 0, segmentCodec: 'mp3', samples: [], manifestCodec: audioCodec, duration: trackDuration, inputTimeScale: 90000, dropped: 0 }; } static probe(data) { if (!data) { return false; } // check if data contains ID3 timestamp and MPEG sync word // Look for MPEG header | 1111 1111 | 111X XYZX | where X can be either 0 or 1 and Y or Z should be 1 // Layer bits (position 14 and 15) in header should be always different from 0 (Layer I or Layer II or Layer III) // More info http://www.mp3-tech.org/programmer/frame_header.html const id3Data = getID3Data(data, 0); let offset = (id3Data == null ? void 0 : id3Data.length) || 0; // Check for ac-3|ec-3 sync bytes and return false if present if (id3Data && data[offset] === 0x0b && data[offset + 1] === 0x77 && getTimeStamp(id3Data) !== undefined && // check the bsid to confirm ac-3 or ec-3 (not mp3) getAudioBSID(data, offset) <= 16) { return false; } for (let length = data.length; offset < length; offset++) { if (probe(data, offset)) { logger.log('MPEG Audio sync word found !'); return true; } } return false; } canParse(data, offset) { return canParse(data, offset); } appendFrame(track, data, offset) { if (this.basePTS === null) { return; } return appendFrame(track, data, offset, this.basePTS, this.frameIndex); } } /** * AAC helper */ class AAC { static getSilentFrame(codec, channelCount) { switch (codec) { case 'mp4a.40.2': if (channelCount === 1) { return new Uint8Array([0x00, 0xc8, 0x00, 0x80, 0x23, 0x80]); } else if (channelCount === 2) { return new Uint8Array([0x21, 0x00, 0x49, 0x90, 0x02, 0x19, 0x00, 0x23, 0x80]); } else if (channelCount === 3) { return new Uint8Array([0x00, 0xc8, 0x00, 0x80, 0x20, 0x84, 0x01, 0x26, 0x40, 0x08, 0x64, 0x00, 0x8e]); } else if (channelCount === 4) { return new Uint8Array([0x00, 0xc8, 0x00, 0x80, 0x20, 0x84, 0x01, 0x26, 0x40, 0x08, 0x64, 0x00, 0x80, 0x2c, 0x80, 0x08, 0x02, 0x38]); } else if (channelCount === 5) { return new Uint8Array([0x00, 0xc8, 0x00, 0x80, 0x20, 0x84, 0x01, 0x26, 0x40, 0x08, 0x64, 0x00, 0x82, 0x30, 0x04, 0x99, 0x00, 0x21, 0x90, 0x02, 0x38]); } else if (channelCount === 6) { return new Uint8Array([0x00, 0xc8, 0x00, 0x80, 0x20, 0x84, 0x01, 0x26, 0x40, 0x08, 0x64, 0x00, 0x82, 0x30, 0x04, 0x99, 0x00, 0x21, 0x90, 0x02, 0x00, 0xb2, 0x00, 0x20, 0x08, 0xe0]); } break; // handle HE-AAC below (mp4a.40.5 / mp4a.40.29) default: if (channelCount === 1) { // ffmpeg -y -f lavfi -i "aevalsrc=0:d=0.05" -c:a libfdk_aac -profile:a aac_he -b:a 4k output.aac && hexdump -v -e '16/1 "0x%x," "\n"' -v output.aac return new Uint8Array([0x1, 0x40, 0x22, 0x80, 0xa3, 0x4e, 0xe6, 0x80, 0xba, 0x8, 0x0, 0x0, 0x0, 0x1c, 0x6, 0xf1, 0xc1, 0xa, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5e]); } else if (channelCount === 2) { // ffmpeg -y -f lavfi -i "aevalsrc=0|0:d=0.05" -c:a libfdk_aac -profile:a aac_he_v2 -b:a 4k output.aac && hexdump -v -e '16/1 "0x%x," "\n"' -v output.aac return new Uint8Array([0x1, 0x40, 0x22, 0x80, 0xa3, 0x5e, 0xe6, 0x80, 0xba, 0x8, 0x0, 0x0, 0x0, 0x0, 0x95, 0x0, 0x6, 0xf1, 0xa1, 0xa, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5e]); } else if (channelCount === 3) { // ffmpeg -y -f lavfi -i "aevalsrc=0|0|0:d=0.05" -c:a libfdk_aac -profile:a aac_he_v2 -b:a 4k output.aac && hexdump -v -e '16/1 "0x%x," "\n"' -v output.aac return new Uint8Array([0x1, 0x40, 0x22, 0x80, 0xa3, 0x5e, 0xe6, 0x80, 0xba, 0x8, 0x0, 0x0, 0x0, 0x0, 0x95, 0x0, 0x6, 0xf1, 0xa1, 0xa, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5a, 0x5e]); } break; } return undefined; } } /** * Generate MP4 Box */ const UINT32_MAX = Math.pow(2, 32) - 1; class MP4 { static init() { MP4.types = { avc1: [], // codingname avcC: [], btrt: [], dinf: [], dref: [], esds: [], ftyp: [], hdlr: [], mdat: [], mdhd: [], mdia: [], mfhd: [], minf: [], moof: [], moov: [], mp4a: [], '.mp3': [], dac3: [], 'ac-3': [], mvex: [], mvhd: [], pasp: [], sdtp: [], stbl: [], stco: [], stsc: [], stsd: [], stsz: [], stts: [], tfdt: [], tfhd: [], traf: [], trak: [], trun: [], trex: [], tkhd: [], vmhd: [], smhd: [] }; let i; for (i in MP4.types) { if (MP4.types.hasOwnProperty(i)) { MP4.types[i] = [i.charCodeAt(0), i.charCodeAt(1), i.charCodeAt(2), i.charCodeAt(3)]; } } const videoHdlr = new Uint8Array([0x00, // version 0 0x00, 0x00, 0x00, // flags 0x00, 0x00, 0x00, 0x00, // pre_defined 0x76, 0x69, 0x64, 0x65, // handler_type: 'vide' 0x00, 0x00, 0x00, 0x00, // reserved 0x00, 0x00, 0x00, 0x00, // reserved 0x00, 0x00, 0x00, 0x00, // reserved 0x56, 0x69, 0x64, 0x65, 0x6f, 0x48, 0x61, 0x6e, 0x64, 0x6c, 0x65, 0x72, 0x00 // name: 'VideoHandler' ]); const audioHdlr = new Uint8Array([0x00, // version 0 0x00, 0x00, 0x00, // flags 0x00, 0x00, 0x00, 0x00, // pre_defined 0x73, 0x6f, 0x75, 0x6e, // handler_type: 'soun' 0x00, 0x00, 0x00, 0x00, // reserved 0x00, 0x00, 0x00, 0x00, // reserved 0x00, 0x00, 0x00, 0x00, // reserved 0x53, 0x6f, 0x75, 0x6e, 0x64, 0x48, 0x61, 0x6e, 0x64, 0x6c, 0x65, 0x72, 0x00 // name: 'SoundHandler' ]); MP4.HDLR_TYPES = { video: videoHdlr, audio: audioHdlr }; const dref = new Uint8Array([0x00, // version 0 0x00, 0x00, 0x00, // flags 0x00, 0x00, 0x00, 0x01, // entry_count 0x00, 0x00, 0x00, 0x0c, // entry_size 0x75, 0x72, 0x6c, 0x20, // 'url' type 0x00, // version 0 0x00, 0x00, 0x01 // entry_flags ]); const stco = new Uint8Array([0x00, // version 0x00, 0x00, 0x00, // flags 0x00, 0x00, 0x00, 0x00 // entry_count ]); MP4.STTS = MP4.STSC = MP4.STCO = stco; MP4.STSZ = new Uint8Array([0x00, // version 0x00, 0x00, 0x00, // flags 0x00, 0x00, 0x00, 0x00, // sample_size 0x00, 0x00, 0x00, 0x00 // sample_count ]); MP4.VMHD = new Uint8Array([0x00, // version 0x00, 0x00, 0x01, // flags 0x00, 0x00, // graphicsmode 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // opcolor ]); MP4.SMHD = new Uint8Array([0x00, // version 0x00, 0x00, 0x00, // flags 0x00, 0x00, // balance 0x00, 0x00 // reserved ]); MP4.STSD = new Uint8Array([0x00, // version 0 0x00, 0x00, 0x00, // flags 0x00, 0x00, 0x00, 0x01]); // entry_count const majorBrand = new Uint8Array([105, 115, 111, 109]); // isom const avc1Brand = new Uint8Array([97, 118, 99, 49]); // avc1 const minorVersion = new Uint8Array([0, 0, 0, 1]); MP4.FTYP = MP4.box(MP4.types.ftyp, majorBrand, minorVersion, majorBrand, avc1Brand); MP4.DINF = MP4.box(MP4.types.dinf, MP4.box(MP4.types.dref, dref)); } static box(type, ...payload) { let size = 8; let i = payload.length; const len = i; // calculate the total size we need to allocate while (i--) { size += payload[i].byteLength; } const result = new Uint8Array(size); result[0] = size >> 24 & 0xff; result[1] = size >> 16 & 0xff; result[2] = size >> 8 & 0xff; result[3] = size & 0xff; result.set(type, 4); // copy the payload into the result for (i = 0, size = 8; i < len; i++) { // copy payload[i] array @ offset size result.set(payload[i], size); size += payload[i].byteLength; } return result; } static hdlr(type) { return MP4.box(MP4.types.hdlr, MP4.HDLR_TYPES[type]); } static mdat(data) { return MP4.box(MP4.types.mdat, data); } static mdhd(timescale, duration) { duration *= timescale; const upperWordDuration = Math.floor(duration / (UINT32_MAX + 1)); const lowerWordDuration = Math.floor(duration % (UINT32_MAX + 1)); return MP4.box(MP4.types.mdhd, new Uint8Array([0x01, // version 1 0x00, 0x00, 0x00, // flags 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, // creation_time 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, // modification_time timescale >> 24 & 0xff, timescale >> 16 & 0xff, timescale >> 8 & 0xff, timescale & 0xff, // timescale upperWordDuration >> 24, upperWordDuration >> 16 & 0xff, upperWordDuration >> 8 & 0xff, upperWordDuration & 0xff, lowerWordDuration >> 24, lowerWordDuration >> 16 & 0xff, lowerWordDuration >> 8 & 0xff, lowerWordDuration & 0xff, 0x55, 0xc4, // 'und' language (undetermined) 0x00, 0x00])); } static mdia(track) { return MP4.box(MP4.types.mdia, MP4.mdhd(track.timescale, track.duration), MP4.hdlr(track.type), MP4.minf(track)); } static mfhd(sequenceNumber) { return MP4.box(MP4.types.mfhd, new Uint8Array([0x00, 0x00, 0x00, 0x00, // flags sequenceNumber >> 24, sequenceNumber >> 16 & 0xff, sequenceNumber >> 8 & 0xff, sequenceNumber & 0xff // sequence_number ])); } static minf(track) { if (track.type === 'audio') { return MP4.box(MP4.types.minf, MP4.box(MP4.types.smhd, MP4.SMHD), MP4.DINF, MP4.stbl(track)); } else { return MP4.box(MP4.types.minf, MP4.box(MP4.types.vmhd, MP4.VMHD), MP4.DINF, MP4.stbl(track)); } } static moof(sn, baseMediaDecodeTime, track) { return MP4.box(MP4.types.moof, MP4.mfhd(sn), MP4.traf(track, baseMediaDecodeTime)); } static moov(tracks) { let i = tracks.length; const boxes = []; while (i--) { boxes[i] = MP4.trak(tracks[i]); } return MP4.box.apply(null, [MP4.types.moov, MP4.mvhd(tracks[0].timescale, tracks[0].duration)].concat(boxes).concat(MP4.mvex(tracks))); } static mvex(tracks) { let i = tracks.length; const boxes = []; while (i--) { boxes[i] = MP4.trex(tracks[i]); } return MP4.box.apply(null, [MP4.types.mvex, ...boxes]); } static mvhd(timescale, duration) { duration *= timescale; const upperWordDuration = Math.floor(duration / (UINT32_MAX + 1)); const lowerWordDuration = Math.floor(duration % (UINT32_MAX + 1)); const bytes = new Uint8Array([0x01, // version 1 0x00, 0x00, 0x00, // flags 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, // creation_time 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, // modification_time timescale >> 24 & 0xff, timescale >> 16 & 0xff, timescale >> 8 & 0xff, timescale & 0xff, // timescale upperWordDuration >> 24, upperWordDuration >> 16 & 0xff, upperWordDuration >> 8 & 0xff, upperWordDuration & 0xff, lowerWordDuration >> 24, lowerWordDuration >> 16 & 0xff, lowerWordDuration >> 8 & 0xff, lowerWordDuration & 0xff, 0x00, 0x01, 0x00, 0x00, // 1.0 rate 0x01, 0x00, // 1.0 volume 0x00, 0x00, // reserved 0x00, 0x00, 0x00, 0x00, // reserved 0x00, 0x00, 0x00, 0x00, // reserved 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, // transformation: unity matrix 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // pre_defined 0xff, 0xff, 0xff, 0xff // next_track_ID ]); return MP4.box(MP4.types.mvhd, bytes); } static sdtp(track) { const samples = track.samples || []; const bytes = new Uint8Array(4 + samples.length); let i; let flags; // leave the full box header (4 bytes) all zero // write the sample table for (i = 0; i < samples.length; i++) { flags = samples[i].flags; bytes[i + 4] = flags.dependsOn << 4 | flags.isDependedOn << 2 | flags.hasRedundancy; } return MP4.box(MP4.types.sdtp, bytes); } static stbl(track) { return MP4.box(MP4.types.stbl, MP4.stsd(track), MP4.box(MP4.types.stts, MP4.STTS), MP4.box(MP4.types.stsc, MP4.STSC), MP4.box(MP4.types.stsz, MP4.STSZ), MP4.box(MP4.types.stco, MP4.STCO)); } static avc1(track) { let sps = []; let pps = []; let i; let data; let len; // assemble the SPSs for (i = 0; i < track.sps.length; i++) { data = track.sps[i]; len = data.byteLength; sps.push(len >>> 8 & 0xff); sps.push(len & 0xff); // SPS sps = sps.concat(Array.prototype.slice.call(data)); } // assemble the PPSs for (i = 0; i < track.pps.length; i++) { data = track.pps[i]; len = data.byteLength; pps.push(len >>> 8 & 0xff); pps.push(len & 0xff); pps = pps.concat(Array.prototype.slice.call(data)); } const avcc = MP4.box(MP4.types.avcC, new Uint8Array([0x01, // version sps[3], // profile sps[4], // profile compat sps[5], // level 0xfc | 3, // lengthSizeMinusOne, hard-coded to 4 bytes 0xe0 | track.sps.length // 3bit reserved (111) + numOfSequenceParameterSets ].concat(sps).concat([track.pps.length // numOfPictureParameterSets ]).concat(pps))); // "PPS" const width = track.width; const height = track.height; const hSpacing = track.pixelRatio[0]; const vSpacing = track.pixelRatio[1]; return MP4.box(MP4.types.avc1, new Uint8Array([0x00, 0x00, 0x00, // reserved 0x00, 0x00, 0x00, // reserved 0x00, 0x01, // data_reference_index 0x00, 0x00, // pre_defined 0x00, 0x00, // reserved 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // pre_defined width >> 8 & 0xff, width & 0xff, // width height >> 8 & 0xff, height & 0xff, // height 0x00, 0x48, 0x00, 0x00, // horizresolution 0x00, 0x48, 0x00, 0x00, // vertresolution 0x00, 0x00, 0x00, 0x00, // reserved 0x00, 0x01, // frame_count 0x12, 0x64, 0x61, 0x69, 0x6c, // dailymotion/hls.js 0x79, 0x6d, 0x6f, 0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x68, 0x6c, 0x73, 0x2e, 0x6a, 0x73, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // compressorname 0x00, 0x18, // depth = 24 0x11, 0x11]), // pre_defined = -1 avcc, MP4.box(MP4.types.btrt, new Uint8Array([0x00, 0x1c, 0x9c, 0x80, // bufferSizeDB 0x00, 0x2d, 0xc6, 0xc0, // maxBitrate 0x00, 0x2d, 0xc6, 0xc0])), // avgBitrate MP4.box(MP4.types.pasp, new Uint8Array([hSpacing >> 24, // hSpacing hSpacing >> 16 & 0xff, hSpacing >> 8 & 0xff, hSpacing & 0xff, vSpacing >> 24, // vSpacing vSpacing >> 16 & 0xff, vSpacing >> 8 & 0xff, vSpacing & 0xff]))); } static esds(track) { const configlen = track.config.length; return new Uint8Array([0x00, // version 0 0x00, 0x00, 0x00, // flags 0x03, // descriptor_type 0x17 + configlen, // length 0x00, 0x01, // es_id 0x00, // stream_priority 0x04, // descriptor_type 0x0f + configlen, // length 0x40, // codec : mpeg4_audio 0x15, // stream_type 0x00, 0x00, 0x00, // buffer_size 0x00, 0x00, 0x00, 0x00, // maxBitrate 0x00, 0x00, 0x00, 0x00, // avgBitrate 0x05 // descriptor_type ].concat([configlen]).concat(track.config).concat([0x06, 0x01, 0x02])); // GASpecificConfig)); // length + audio config descriptor } static audioStsd(track) { const samplerate = track.samplerate; return new Uint8Array([0x00, 0x00, 0x00, // reserved 0x00, 0x00, 0x00, // reserved 0x00, 0x01, // data_reference_index 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // reserved 0x00, track.channelCount, // channelcount 0x00, 0x10, // sampleSize:16bits 0x00, 0x00, 0x00, 0x00, // reserved2 samplerate >> 8 & 0xff, samplerate & 0xff, // 0x00, 0x00]); } static mp4a(track) { return MP4.box(MP4.types.mp4a, MP4.audioStsd(track), MP4.box(MP4.types.esds, MP4.esds(track))); } static mp3(track) { return MP4.box(MP4.types['.mp3'], MP4.audioStsd(track)); } static ac3(track) { return MP4.box(MP4.types['ac-3'], MP4.audioStsd(track), MP4.box(MP4.types.dac3, track.config)); } static stsd(track) { if (track.type === 'audio') { if (track.segmentCodec === 'mp3' && track.codec === 'mp3') { return MP4.box(MP4.types.stsd, MP4.STSD, MP4.mp3(track)); } if (track.segmentCodec === 'ac3') { return MP4.box(MP4.types.stsd, MP4.STSD, MP4.ac3(track)); } return MP4.box(MP4.types.stsd, MP4.STSD, MP4.mp4a(track)); } else { return MP4.box(MP4.types.stsd, MP4.STSD, MP4.avc1(track)); } } static tkhd(track) { const id = track.id; const duration = track.duration * track.timescale; const width = track.width; const height = track.height; const upperWordDuration = Math.floor(duration / (UINT32_MAX + 1)); const lowerWordDuration = Math.floor(duration % (UINT32_MAX + 1)); return MP4.box(MP4.types.tkhd, new Uint8Array([0x01, // version 1 0x00, 0x00, 0x07, // flags 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, // creation_time 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, // modification_time id >> 24 & 0xff, id >> 16 & 0xff, id >> 8 & 0xff, id & 0xff, // track_ID 0x00, 0x00, 0x00, 0x00, // reserved upperWordDuration >> 24, upperWordDuration >> 16 & 0xff, upperWordDuration >> 8 & 0xff, upperWordDuration & 0xff, lowerWordDuration >> 24, lowerWordDuration >> 16 & 0xff, lowerWordDuration >> 8 & 0xff, lowerWordDuration & 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // reserved 0x00, 0x00, // layer 0x00, 0x00, // alternate_group 0x00, 0x00, // non-audio track volume 0x00, 0x00, // reserved 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, // transformation: unity matrix width >> 8 & 0xff, width & 0xff, 0x00, 0x00, // width height >> 8 & 0xff, height & 0xff, 0x00, 0x00 // height ])); } static traf(track, baseMediaDecodeTime) { const sampleDependencyTable = MP4.sdtp(track); const id = track.id; const upperWordBaseMediaDecodeTime = Math.floor(baseMediaDecodeTime / (UINT32_MAX + 1)); const lowerWordBaseMediaDecodeTime = Math.floor(baseMediaDecodeTime % (UINT32_MAX + 1)); return MP4.box(MP4.types.traf, MP4.box(MP4.types.tfhd, new Uint8Array([0x00, // version 0 0x00, 0x00, 0x00, // flags id >> 24, id >> 16 & 0xff, id >> 8 & 0xff, id & 0xff // track_ID ])), MP4.box(MP4.types.tfdt, new Uint8Array([0x01, // version 1 0x00, 0x00, 0x00, // flags upperWordBaseMediaDecodeTime >> 24, upperWordBaseMediaDecodeTime >> 16 & 0xff, upperWordBaseMediaDecodeTime >> 8 & 0xff, upperWordBaseMediaDecodeTime & 0xff, lowerWordBaseMediaDecodeTime >> 24, lowerWordBaseMediaDecodeTime >> 16 & 0xff, lowerWordBaseMediaDecodeTime >> 8 & 0xff, lowerWordBaseMediaDecodeTime & 0xff])), MP4.trun(track, sampleDependencyTable.length + 16 + // tfhd 20 + // tfdt 8 + // traf header 16 + // mfhd 8 + // moof header 8), // mdat header sampleDependencyTable); } /** * Generate a track box. * @param track a track definition */ static trak(track) { track.duration = track.duration || 0xffffffff; return MP4.box(MP4.types.trak, MP4.tkhd(track), MP4.mdia(track)); } static trex(track) { const id = track.id; return MP4.box(MP4.types.trex, new Uint8Array([0x00, // version 0 0x00, 0x00, 0x00, // flags id >> 24, id >> 16 & 0xff, id >> 8 & 0xff, id & 0xff, // track_ID 0x00, 0x00, 0x00, 0x01, // default_sample_description_index 0x00, 0x00, 0x00, 0x00, // default_sample_duration 0x00, 0x00, 0x00, 0x00, // default_sample_size 0x00, 0x01, 0x00, 0x01 // default_sample_flags ])); } static trun(track, offset) { const samples = track.samples || []; const len = samples.length; const arraylen = 12 + 16 * len; const array = new Uint8Array(arraylen); let i; let sample; let duration; let size; let flags; let cts; offset += 8 + arraylen; array.set([track.type === 'video' ? 0x01 : 0x00, // version 1 for video with signed-int sample_composition_time_offset 0x00, 0x0f, 0x01, // flags len >>> 24 & 0xff, len >>> 16 & 0xff, len >>> 8 & 0xff, len & 0xff, // sample_count offset >>> 24 & 0xff, offset >>> 16 & 0xff, offset >>> 8 & 0xff, offset & 0xff // data_offset ], 0); for (i = 0; i < len; i++) { sample = samples[i]; duration = sample.duration; size = sample.size; flags = sample.flags; cts = sample.cts; array.set([duration >>> 24 & 0xff, duration >>> 16 & 0xff, duration >>> 8 & 0xff, duration & 0xff, // sample_duration size >>> 24 & 0xff, size >>> 16 & 0xff, size >>> 8 & 0xff, size & 0xff, // sample_size flags.isLeading << 2 | flags.dependsOn, flags.isDependedOn << 6 | flags.hasRedundancy << 4 | flags.paddingValue << 1 | flags.isNonSync, flags.degradPrio & 0xf0 << 8, flags.degradPrio & 0x0f, // sample_flags cts >>> 24 & 0xff, cts >>> 16 & 0xff, cts >>> 8 & 0xff, cts & 0xff // sample_composition_time_offset ], 12 + 16 * i); } return MP4.box(MP4.types.trun, array); } static initSegment(tracks) { if (!MP4.types) { MP4.init(); } const movie = MP4.moov(tracks); const result = appendUint8Array(MP4.FTYP, movie); return result; } } MP4.types = void 0; MP4.HDLR_TYPES = void 0; MP4.STTS = void 0; MP4.STSC = void 0; MP4.STCO = void 0; MP4.STSZ = void 0; MP4.VMHD = void 0; MP4.SMHD = void 0; MP4.STSD = void 0; MP4.FTYP = void 0; MP4.DINF = void 0; const MPEG_TS_CLOCK_FREQ_HZ = 90000; function toTimescaleFromBase(baseTime, destScale, srcBase = 1, round = false) { const result = baseTime * destScale * srcBase; // equivalent to `(value * scale) / (1 / base)` return round ? Math.round(result) : result; } function toMsFromMpegTsClock(baseTime, round = false) { return toTimescaleFromBase(baseTime, 1000, 1 / MPEG_TS_CLOCK_FREQ_HZ, round); } const MAX_SILENT_FRAME_DURATION = 10 * 1000; // 10 seconds const AAC_SAMPLES_PER_FRAME = 1024; const MPEG_AUDIO_SAMPLE_PER_FRAME = 1152; const AC3_SAMPLES_PER_FRAME = 1536; let chromeVersion = null; let safariWebkitVersion = null; class MP4Remuxer { constructor(observer, config, typeSupported, vendor = '') { this.observer = void 0; this.config = void 0; this.typeSupported = void 0; this.ISGenerated = false; this._initPTS = null; this._initDTS = null; this.nextAvcDts = null; this.nextAudioPts = null; this.videoSampleDuration = null; this.isAudioContiguous = false; this.isVideoContiguous = false; this.videoTrackConfig = void 0; this.observer = observer; this.config = config; this.typeSupported = typeSupported; this.ISGenerated = false; if (chromeVersion === null) { const userAgent = navigator.userAgent || ''; const result = userAgent.match(/Chrome\/(\d+)/i); chromeVersion = result ? parseInt(result[1]) : 0; } if (safariWebkitVersion === null) { const result = navigator.userAgent.match(/Safari\/(\d+)/i); safariWebkitVersion = result ? parseInt(result[1]) : 0; } } destroy() { // @ts-ignore this.config = this.videoTrackConfig = this._initPTS = this._initDTS = null; } resetTimeStamp(defaultTimeStamp) { logger.log('[mp4-remuxer]: initPTS & initDTS reset'); this._initPTS = this._initDTS = defaultTimeStamp; } resetNextTimestamp() { logger.log('[mp4-remuxer]: reset next timestamp'); this.isVideoContiguous = false; this.isAudioContiguous = false; } resetInitSegment() { logger.log('[mp4-remuxer]: ISGenerated flag reset'); this.ISGenerated = false; this.videoTrackConfig = undefined; } getVideoStartPts(videoSamples) { let rolloverDetected = false; const startPTS = videoSamples.reduce((minPTS, sample) => { const delta = sample.pts - minPTS; if (delta < -4294967296) { // 2^32, see PTSNormalize for reasoning, but we're hitting a rollover here, and we don't want that to impact the timeOffset calculation rolloverDetected = true; return normalizePts(minPTS, sample.pts); } else if (delta > 0) { return minPTS; } else { return sample.pts; } }, videoSamples[0].pts); if (rolloverDetected) { logger.debug('PTS rollover detected'); } return startPTS; } remux(audioTrack, videoTrack, id3Track, textTrack, timeOffset, accurateTimeOffset, flush, playlistType) { let video; let audio; let initSegment; let text; let id3; let independent; let audioTimeOffset = timeOffset; let videoTimeOffset = timeOffset; // If we're remuxing audio and video progressively, wait until we've received enough samples for each track before proceeding. // This is done to synchronize the audio and video streams. We know if the current segment will have samples if the "pid" // parameter is greater than -1. The pid is set when the PMT is parsed, which contains the tracks list. // However, if the initSegment has already been generated, or we've reached the end of a segment (flush), // then we can remux one track without waiting for the other. const hasAudio = audioTrack.pid > -1; const hasVideo = videoTrack.pid > -1; const length = videoTrack.samples.length; const enoughAudioSamples = audioTrack.samples.length > 0; const enoughVideoSamples = flush && length > 0 || length > 1; const canRemuxAvc = (!hasAudio || enoughAudioSamples) && (!hasVideo || enoughVideoSamples) || this.ISGenerated || flush; if (canRemuxAvc) { if (this.ISGenerated) { var _videoTrack$pixelRati, _config$pixelRatio, _videoTrack$pixelRati2, _config$pixelRatio2; const config = this.videoTrackConfig; if (config && (videoTrack.width !== config.width || videoTrack.height !== config.height || ((_videoTrack$pixelRati = videoTrack.pixelRatio) == null ? void 0 : _videoTrack$pixelRati[0]) !== ((_config$pixelRatio = config.pixelRatio) == null ? void 0 : _config$pixelRatio[0]) || ((_videoTrack$pixelRati2 = videoTrack.pixelRatio) == null ? void 0 : _videoTrack$pixelRati2[1]) !== ((_config$pixelRatio2 = config.pixelRatio) == null ? void 0 : _config$pixelRatio2[1]))) { this.resetInitSegment(); } } else { initSegment = this.generateIS(audioTrack, videoTrack, timeOffset, accurateTimeOffset); } const isVideoContiguous = this.isVideoContiguous; let firstKeyFrameIndex = -1; let firstKeyFramePTS; if (enoughVideoSamples) { firstKeyFrameIndex = findKeyframeIndex(videoTrack.samples); if (!isVideoContiguous && this.config.forceKeyFrameOnDiscontinuity) { independent = true; if (firstKeyFrameIndex > 0) { logger.warn(`[mp4-remuxer]: Dropped ${firstKeyFrameIndex} out of ${length} video samples due to a missing keyframe`); const startPTS = this.getVideoStartPts(videoTrack.samples); videoTrack.samples = videoTrack.samples.slice(firstKeyFrameIndex); videoTrack.dropped += firstKeyFrameIndex; videoTimeOffset += (videoTrack.samples[0].pts - startPTS) / videoTrack.inputTimeScale; firstKeyFramePTS = videoTimeOffset; } else if (firstKeyFrameIndex === -1) { logger.warn(`[mp4-remuxer]: No keyframe found out of ${length} video samples`); independent = false; } } } if (this.ISGenerated) { if (enoughAudioSamples && enoughVideoSamples) { // timeOffset is expected to be the offset of the first timestamp of this fragment (first DTS) // if first audio DTS is not aligned with first video DTS then we need to take that into account // when providing timeOffset to remuxAudio / remuxVideo. if we don't do that, there might be a permanent / small // drift between audio and video streams const startPTS = this.getVideoStartPts(videoTrack.samples); const tsDelta = normalizePts(audioTrack.samples[0].pts, startPTS) - startPTS; const audiovideoTimestampDelta = tsDelta / videoTrack.inputTimeScale; audioTimeOffset += Math.max(0, audiovideoTimestampDelta); videoTimeOffset += Math.max(0, -audiovideoTimestampDelta); } // Purposefully remuxing audio before video, so that remuxVideo can use nextAudioPts, which is calculated in remuxAudio. if (enoughAudioSamples) { // if initSegment was generated without audio samples, regenerate it again if (!audioTrack.samplerate) { logger.warn('[mp4-remuxer]: regenerate InitSegment as audio detected'); initSegment = this.generateIS(audioTrack, videoTrack, timeOffset, accurateTimeOffset); } audio = this.remuxAudio(audioTrack, audioTimeOffset, this.isAudioContiguous, accurateTimeOffset, hasVideo || enoughVideoSamples || playlistType === PlaylistLevelType.AUDIO ? videoTimeOffset : undefined); if (enoughVideoSamples) { const audioTrackLength = audio ? audio.endPTS - audio.startPTS : 0; // if initSegment was generated without video samples, regenerate it again if (!videoTrack.inputTimeScale) { logger.warn('[mp4-remuxer]: regenerate InitSegment as video detected'); initSegment = this.generateIS(audioTrack, videoTrack, timeOffset, accurateTimeOffset); } video = this.remuxVideo(videoTrack, videoTimeOffset, isVideoContiguous, audioTrackLength); } } else if (enoughVideoSamples) { video = this.remuxVideo(videoTrack, videoTimeOffset, isVideoContiguous, 0); } if (video) { video.firstKeyFrame = firstKeyFrameIndex; video.independent = firstKeyFrameIndex !== -1; video.firstKeyFramePTS = firstKeyFramePTS; } } } // Allow ID3 and text to remux, even if more audio/video samples are required if (this.ISGenerated && this._initPTS && this._initDTS) { if (id3Track.samples.length) { id3 = flushTextTrackMetadataCueSamples(id3Track, timeOffset, this._initPTS, this._initDTS); } if (textTrack.samples.length) { text = flushTextTrackUserdataCueSamples(textTrack, timeOffset, this._initPTS); } } return { audio, video, initSegment, independent, text, id3 }; } generateIS(audioTrack, videoTrack, timeOffset, accurateTimeOffset) { const audioSamples = audioTrack.samples; const videoSamples = videoTrack.samples; const typeSupported = this.typeSupported; const tracks = {}; const _initPTS = this._initPTS; let computePTSDTS = !_initPTS || accurateTimeOffset; let container = 'audio/mp4'; let initPTS; let initDTS; let timescale; if (computePTSDTS) { initPTS = initDTS = Infinity; } if (audioTrack.config && audioSamples.length) { // let's use audio sampling rate as MP4 time scale. // rationale is that there is a integer nb of audio frames per audio sample (1024 for AAC) // using audio sampling rate here helps having an integer MP4 frame duration // this avoids potential rounding issue and AV sync issue audioTrack.timescale = audioTrack.samplerate; switch (audioTrack.segmentCodec) { case 'mp3': if (typeSupported.mpeg) { // Chrome and Safari container = 'audio/mpeg'; audioTrack.codec = ''; } else if (typeSupported.mp3) { // Firefox audioTrack.codec = 'mp3'; } break; case 'ac3': audioTrack.codec = 'ac-3'; break; } tracks.audio = { id: 'audio', container: container, codec: audioTrack.codec, initSegment: audioTrack.segmentCodec === 'mp3' && typeSupported.mpeg ? new Uint8Array(0) : MP4.initSegment([audioTrack]), metadata: { channelCount: audioTrack.channelCount } }; if (computePTSDTS) { timescale = audioTrack.inputTimeScale; if (!_initPTS || timescale !== _initPTS.timescale) { // remember first PTS of this demuxing context. for audio, PTS = DTS initPTS = initDTS = audioSamples[0].pts - Math.round(timescale * timeOffset); } else { computePTSDTS = false; } } } if (videoTrack.sps && videoTrack.pps && videoSamples.length) { // let's use input time scale as MP4 video timescale // we use input time scale straight away to avoid rounding issues on frame duration / cts computation videoTrack.timescale = videoTrack.inputTimeScale; tracks.video = { id: 'main', container: 'video/mp4', codec: videoTrack.codec, initSegment: MP4.initSegment([videoTrack]), metadata: { width: videoTrack.width, height: videoTrack.height } }; if (computePTSDTS) { timescale = videoTrack.inputTimeScale; if (!_initPTS || timescale !== _initPTS.timescale) { const startPTS = this.getVideoStartPts(videoSamples); const startOffset = Math.round(timescale * timeOffset); initDTS = Math.min(initDTS, normalizePts(videoSamples[0].dts, startPTS) - startOffset); initPTS = Math.min(initPTS, startPTS - startOffset); } else { computePTSDTS = false; } } this.videoTrackConfig = { width: videoTrack.width, height: videoTrack.height, pixelRatio: videoTrack.pixelRatio }; } if (Object.keys(tracks).length) { this.ISGenerated = true; if (computePTSDTS) { this._initPTS = { baseTime: initPTS, timescale: timescale }; this._initDTS = { baseTime: initDTS, timescale: timescale }; } else { initPTS = timescale = undefined; } return { tracks, initPTS, timescale }; } } remuxVideo(track, timeOffset, contiguous, audioTrackLength) { const timeScale = track.inputTimeScale; const inputSamples = track.samples; const outputSamples = []; const nbSamples = inputSamples.length; const initPTS = this._initPTS; let nextAvcDts = this.nextAvcDts; let offset = 8; let mp4SampleDuration = this.videoSampleDuration; let firstDTS; let lastDTS; let minPTS = Number.POSITIVE_INFINITY; let maxPTS = Number.NEGATIVE_INFINITY; let sortSamples = false; // if parsed fragment is contiguous with last one, let's use last DTS value as reference if (!contiguous || nextAvcDts === null) { const pts = timeOffset * timeScale; const cts = inputSamples[0].pts - normalizePts(inputSamples[0].dts, inputSamples[0].pts); if (chromeVersion && nextAvcDts !== null && Math.abs(pts - cts - nextAvcDts) < 15000) { // treat as contigous to adjust samples that would otherwise produce video buffer gaps in Chrome contiguous = true; } else { // if not contiguous, let's use target timeOffset nextAvcDts = pts - cts; } } // PTS is coded on 33bits, and can loop from -2^32 to 2^32 // PTSNormalize will make PTS/DTS value monotonic, we use last known DTS value as reference value const initTime = initPTS.baseTime * timeScale / initPTS.timescale; for (let i = 0; i < nbSamples; i++) { const sample = inputSamples[i]; sample.pts = normalizePts(sample.pts - initTime, nextAvcDts); sample.dts = normalizePts(sample.dts - initTime, nextAvcDts); if (sample.dts < inputSamples[i > 0 ? i - 1 : i].dts) { sortSamples = true; } } // sort video samples by DTS then PTS then demux id order if (sortSamples) { inputSamples.sort(function (a, b) { const deltadts = a.dts - b.dts; const deltapts = a.pts - b.pts; return deltadts || deltapts; }); } // Get first/last DTS firstDTS = inputSamples[0].dts; lastDTS = inputSamples[inputSamples.length - 1].dts; // Sample duration (as expected by trun MP4 boxes), should be the delta between sample DTS // set this constant duration as being the avg delta between consecutive DTS. const inputDuration = lastDTS - firstDTS; const averageSampleDuration = inputDuration ? Math.round(inputDuration / (nbSamples - 1)) : mp4SampleDuration || track.inputTimeScale / 30; // if fragment are contiguous, detect hole/overlapping between fragments if (contiguous) { // check timestamp continuity across consecutive fragments (this is to remove inter-fragment gap/hole) const delta = firstDTS - nextAvcDts; const foundHole = delta > averageSampleDuration; const foundOverlap = delta < -1; if (foundHole || foundOverlap) { if (foundHole) { logger.warn(`AVC: ${toMsFromMpegTsClock(delta, true)} ms (${delta}dts) hole between fragments detected at ${timeOffset.toFixed(3)}`); } else { logger.warn(`AVC: ${toMsFromMpegTsClock(-delta, true)} ms (${delta}dts) overlapping between fragments detected at ${timeOffset.toFixed(3)}`); } if (!foundOverlap || nextAvcDts >= inputSamples[0].pts || chromeVersion) { firstDTS = nextAvcDts; const firstPTS = inputSamples[0].pts - delta; if (foundHole) { inputSamples[0].dts = firstDTS; inputSamples[0].pts = firstPTS; } else { let isPTSOrderRetained = true; for (let i = 0; i < inputSamples.length; i++) { if (inputSamples[i].dts > firstPTS && isPTSOrderRetained) { break; } const prevPTS = inputSamples[i].pts; inputSamples[i].dts -= delta; inputSamples[i].pts -= delta; // check to see if this sample's PTS order has changed // relative to the next one if (i < inputSamples.length - 1) { const nextSamplePTS = inputSamples[i + 1].pts; const currentSamplePTS = inputSamples[i].pts; const currentOrder = nextSamplePTS <= currentSamplePTS; const prevOrder = nextSamplePTS <= prevPTS; isPTSOrderRetained = currentOrder == prevOrder; } } } logger.log(`Video: Initial PTS/DTS adjusted: ${toMsFromMpegTsClock(firstPTS, true)}/${toMsFromMpegTsClock(firstDTS, true)}, delta: ${toMsFromMpegTsClock(delta, true)} ms`); } } } firstDTS = Math.max(0, firstDTS); let nbNalu = 0; let naluLen = 0; let dtsStep = firstDTS; for (let i = 0; i < nbSamples; i++) { // compute total/avc sample length and nb of NAL units const sample = inputSamples[i]; const units = sample.units; const nbUnits = units.length; let sampleLen = 0; for (let j = 0; j < nbUnits; j++) { sampleLen += units[j].data.length; } naluLen += sampleLen; nbNalu += nbUnits; sample.length = sampleLen; // ensure sample monotonic DTS if (sample.dts < dtsStep) { sample.dts = dtsStep; dtsStep += averageSampleDuration / 4 | 0 || 1; } else { dtsStep = sample.dts; } minPTS = Math.min(sample.pts, minPTS); maxPTS = Math.max(sample.pts, maxPTS); } lastDTS = inputSamples[nbSamples - 1].dts; /* concatenate the video data and construct the mdat in place (need 8 more bytes to fill length and mpdat type) */ const mdatSize = naluLen + 4 * nbNalu + 8; let mdat; try { mdat = new Uint8Array(mdatSize); } catch (err) { this.observer.emit(Events.ERROR, Events.ERROR, { type: ErrorTypes.MUX_ERROR, details: ErrorDetails.REMUX_ALLOC_ERROR, fatal: false, error: err, bytes: mdatSize, reason: `fail allocating video mdat ${mdatSize}` }); return; } const view = new DataView(mdat.buffer); view.setUint32(0, mdatSize); mdat.set(MP4.types.mdat, 4); let stretchedLastFrame = false; let minDtsDelta = Number.POSITIVE_INFINITY; let minPtsDelta = Number.POSITIVE_INFINITY; let maxDtsDelta = Number.NEGATIVE_INFINITY; let maxPtsDelta = Number.NEGATIVE_INFINITY; for (let i = 0; i < nbSamples; i++) { const VideoSample = inputSamples[i]; const VideoSampleUnits = VideoSample.units; let mp4SampleLength = 0; // convert NALU bitstream to MP4 format (prepend NALU with size field) for (let j = 0, nbUnits = VideoSampleUnits.length; j < nbUnits; j++) { const unit = VideoSampleUnits[j]; const unitData = unit.data; const unitDataLen = unit.data.byteLength; view.setUint32(offset, unitDataLen); offset += 4; mdat.set(unitData, offset); offset += unitDataLen; mp4SampleLength += 4 + unitDataLen; } // expected sample duration is the Decoding Timestamp diff of consecutive samples let ptsDelta; if (i < nbSamples - 1) { mp4SampleDuration = inputSamples[i + 1].dts - VideoSample.dts; ptsDelta = inputSamples[i + 1].pts - VideoSample.pts; } else { const config = this.config; const lastFrameDuration = i > 0 ? VideoSample.dts - inputSamples[i - 1].dts : averageSampleDuration; ptsDelta = i > 0 ? VideoSample.pts - inputSamples[i - 1].pts : averageSampleDuration; if (config.stretchShortVideoTrack && this.nextAudioPts !== null) { // In some cases, a segment's audio track duration may exceed the video track duration. // Since we've already remuxed audio, and we know how long the audio track is, we look to // see if the delta to the next segment is longer than maxBufferHole. // If so, playback would potentially get stuck, so we artificially inflate // the duration of the last frame to minimize any potential gap between segments. const gapTolerance = Math.floor(config.maxBufferHole * timeScale); const deltaToFrameEnd = (audioTrackLength ? minPTS + audioTrackLength * timeScale : this.nextAudioPts) - VideoSample.pts; if (deltaToFrameEnd > gapTolerance) { // We subtract lastFrameDuration from deltaToFrameEnd to try to prevent any video // frame overlap. maxBufferHole should be >> lastFrameDuration anyway. mp4SampleDuration = deltaToFrameEnd - lastFrameDuration; if (mp4SampleDuration < 0) { mp4SampleDuration = lastFrameDuration; } else { stretchedLastFrame = true; } logger.log(`[mp4-remuxer]: It is approximately ${deltaToFrameEnd / 90} ms to the next segment; using duration ${mp4SampleDuration / 90} ms for the last video frame.`); } else { mp4SampleDuration = lastFrameDuration; } } else { mp4SampleDuration = lastFrameDuration; } } const compositionTimeOffset = Math.round(VideoSample.pts - VideoSample.dts); minDtsDelta = Math.min(minDtsDelta, mp4SampleDuration); maxDtsDelta = Math.max(maxDtsDelta, mp4SampleDuration); minPtsDelta = Math.min(minPtsDelta, ptsDelta); maxPtsDelta = Math.max(maxPtsDelta, ptsDelta); outputSamples.push(new Mp4Sample(VideoSample.key, mp4SampleDuration, mp4SampleLength, compositionTimeOffset)); } if (outputSamples.length) { if (chromeVersion) { if (chromeVersion < 70) { // Chrome workaround, mark first sample as being a Random Access Point (keyframe) to avoid sourcebuffer append issue // https://code.google.com/p/chromium/issues/detail?id=229412 const flags = outputSamples[0].flags; flags.dependsOn = 2; flags.isNonSync = 0; } } else if (safariWebkitVersion) { // Fix for "CNN special report, with CC" in test-streams (Safari browser only) // Ignore DTS when frame durations are irregular. Safari MSE does not handle this leading to gaps. if (maxPtsDelta - minPtsDelta < maxDtsDelta - minDtsDelta && averageSampleDuration / maxDtsDelta < 0.025 && outputSamples[0].cts === 0) { logger.warn('Found irregular gaps in sample duration. Using PTS instead of DTS to determine MP4 sample duration.'); let dts = firstDTS; for (let i = 0, len = outputSamples.length; i < len; i++) { const nextDts = dts + outputSamples[i].duration; const pts = dts + outputSamples[i].cts; if (i < len - 1) { const nextPts = nextDts + outputSamples[i + 1].cts; outputSamples[i].duration = nextPts - pts; } else { outputSamples[i].duration = i ? outputSamples[i - 1].duration : averageSampleDuration; } outputSamples[i].cts = 0; dts = nextDts; } } } } // next AVC sample DTS should be equal to last sample DTS + last sample duration (in PES timescale) mp4SampleDuration = stretchedLastFrame || !mp4SampleDuration ? averageSampleDuration : mp4SampleDuration; this.nextAvcDts = nextAvcDts = lastDTS + mp4SampleDuration; this.videoSampleDuration = mp4SampleDuration; this.isVideoContiguous = true; const moof = MP4.moof(track.sequenceNumber++, firstDTS, _extends({}, track, { samples: outputSamples })); const type = 'video'; const data = { data1: moof, data2: mdat, startPTS: minPTS / timeScale, endPTS: (maxPTS + mp4SampleDuration) / timeScale, startDTS: firstDTS / timeScale, endDTS: nextAvcDts / timeScale, type, hasAudio: false, hasVideo: true, nb: outputSamples.length, dropped: track.dropped }; track.samples = []; track.dropped = 0; return data; } getSamplesPerFrame(track) { switch (track.segmentCodec) { case 'mp3': return MPEG_AUDIO_SAMPLE_PER_FRAME; case 'ac3': return AC3_SAMPLES_PER_FRAME; default: return AAC_SAMPLES_PER_FRAME; } } remuxAudio(track, timeOffset, contiguous, accurateTimeOffset, videoTimeOffset) { const inputTimeScale = track.inputTimeScale; const mp4timeScale = track.samplerate ? track.samplerate : inputTimeScale; const scaleFactor = inputTimeScale / mp4timeScale; const mp4SampleDuration = this.getSamplesPerFrame(track); const inputSampleDuration = mp4SampleDuration * scaleFactor; const initPTS = this._initPTS; const rawMPEG = track.segmentCodec === 'mp3' && this.typeSupported.mpeg; const outputSamples = []; const alignedWithVideo = videoTimeOffset !== undefined; let inputSamples = track.samples; let offset = rawMPEG ? 0 : 8; let nextAudioPts = this.nextAudioPts || -1; // window.audioSamples ? window.audioSamples.push(inputSamples.map(s => s.pts)) : (window.audioSamples = [inputSamples.map(s => s.pts)]); // for audio samples, also consider consecutive fragments as being contiguous (even if a level switch occurs), // for sake of clarity: // consecutive fragments are frags with // - less than 100ms gaps between new time offset (if accurate) and next expected PTS OR // - less than 20 audio frames distance // contiguous fragments are consecutive fragments from same quality level (same level, new SN = old SN + 1) // this helps ensuring audio continuity // and this also avoids audio glitches/cut when switching quality, or reporting wrong duration on first audio frame const timeOffsetMpegTS = timeOffset * inputTimeScale; const initTime = initPTS.baseTime * inputTimeScale / initPTS.timescale; this.isAudioContiguous = contiguous = contiguous || inputSamples.length && nextAudioPts > 0 && (accurateTimeOffset && Math.abs(timeOffsetMpegTS - nextAudioPts) < 9000 || Math.abs(normalizePts(inputSamples[0].pts - initTime, timeOffsetMpegTS) - nextAudioPts) < 20 * inputSampleDuration); // compute normalized PTS inputSamples.forEach(function (sample) { sample.pts = normalizePts(sample.pts - initTime, timeOffsetMpegTS); }); if (!contiguous || nextAudioPts < 0) { // filter out sample with negative PTS that are not playable anyway // if we don't remove these negative samples, they will shift all audio samples forward. // leading to audio overlap between current / next fragment inputSamples = inputSamples.filter(sample => sample.pts >= 0); // in case all samples have negative PTS, and have been filtered out, return now if (!inputSamples.length) { return; } if (videoTimeOffset === 0) { // Set the start to 0 to match video so that start gaps larger than inputSampleDuration are filled with silence nextAudioPts = 0; } else if (accurateTimeOffset && !alignedWithVideo) { // When not seeking, not live, and LevelDetails.PTSKnown, use fragment start as predicted next audio PTS nextAudioPts = Math.max(0, timeOffsetMpegTS); } else { // if frags are not contiguous and if we cant trust time offset, let's use first sample PTS as next audio PTS nextAudioPts = inputSamples[0].pts; } } // If the audio track is missing samples, the frames seem to get "left-shifted" within the // resulting mp4 segment, causing sync issues and leaving gaps at the end of the audio segment. // In an effort to prevent this from happening, we inject frames here where there are gaps. // When possible, we inject a silent frame; when that's not possible, we duplicate the last // frame. if (track.segmentCodec === 'aac') { const maxAudioFramesDrift = this.config.maxAudioFramesDrift; for (let i = 0, nextPts = nextAudioPts; i < inputSamples.length; i++) { // First, let's see how far off this frame is from where we expect it to be const sample = inputSamples[i]; const pts = sample.pts; const delta = pts - nextPts; const duration = Math.abs(1000 * delta / inputTimeScale); // When remuxing with video, if we're overlapping by more than a duration, drop this sample to stay in sync if (delta <= -maxAudioFramesDrift * inputSampleDuration && alignedWithVideo) { if (i === 0) { logger.warn(`Audio frame @ ${(pts / inputTimeScale).toFixed(3)}s overlaps nextAudioPts by ${Math.round(1000 * delta / inputTimeScale)} ms.`); this.nextAudioPts = nextAudioPts = nextPts = pts; } } // eslint-disable-line brace-style // Insert missing frames if: // 1: We're more than maxAudioFramesDrift frame away // 2: Not more than MAX_SILENT_FRAME_DURATION away // 3: currentTime (aka nextPtsNorm) is not 0 // 4: remuxing with video (videoTimeOffset !== undefined) else if (delta >= maxAudioFramesDrift * inputSampleDuration && duration < MAX_SILENT_FRAME_DURATION && alignedWithVideo) { let missing = Math.round(delta / inputSampleDuration); // Adjust nextPts so that silent samples are aligned with media pts. This will prevent media samples from // later being shifted if nextPts is based on timeOffset and delta is not a multiple of inputSampleDuration. nextPts = pts - missing * inputSampleDuration; if (nextPts < 0) { missing--; nextPts += inputSampleDuration; } if (i === 0) { this.nextAudioPts = nextAudioPts = nextPts; } logger.warn(`[mp4-remuxer]: Injecting ${missing} audio frame @ ${(nextPts / inputTimeScale).toFixed(3)}s due to ${Math.round(1000 * delta / inputTimeScale)} ms gap.`); for (let j = 0; j < missing; j++) { const newStamp = Math.max(nextPts, 0); let fillFrame = AAC.getSilentFrame(track.parsedCodec || track.manifestCodec || track.codec, track.channelCount); if (!fillFrame) { logger.log('[mp4-remuxer]: Unable to get silent frame for given audio codec; duplicating last frame instead.'); fillFrame = sample.unit.subarray(); } inputSamples.splice(i, 0, { unit: fillFrame, pts: newStamp }); nextPts += inputSampleDuration; i++; } } sample.pts = nextPts; nextPts += inputSampleDuration; } } let firstPTS = null; let lastPTS = null; let mdat; let mdatSize = 0; let sampleLength = inputSamples.length; while (sampleLength--) { mdatSize += inputSamples[sampleLength].unit.byteLength; } for (let j = 0, _nbSamples = inputSamples.length; j < _nbSamples; j++) { const audioSample = inputSamples[j]; const unit = audioSample.unit; let pts = audioSample.pts; if (lastPTS !== null) { // If we have more than one sample, set the duration of the sample to the "real" duration; the PTS diff with // the previous sample const prevSample = outputSamples[j - 1]; prevSample.duration = Math.round((pts - lastPTS) / scaleFactor); } else { if (contiguous && track.segmentCodec === 'aac') { // set PTS/DTS to expected PTS/DTS pts = nextAudioPts; } // remember first PTS of our audioSamples firstPTS = pts; if (mdatSize > 0) { /* concatenate the audio data and construct the mdat in place (need 8 more bytes to fill length and mdat type) */ mdatSize += offset; try { mdat = new Uint8Array(mdatSize); } catch (err) { this.observer.emit(Events.ERROR, Events.ERROR, { type: ErrorTypes.MUX_ERROR, details: ErrorDetails.REMUX_ALLOC_ERROR, fatal: false, error: err, bytes: mdatSize, reason: `fail allocating audio mdat ${mdatSize}` }); return; } if (!rawMPEG) { const view = new DataView(mdat.buffer); view.setUint32(0, mdatSize); mdat.set(MP4.types.mdat, 4); } } else { // no audio samples return; } } mdat.set(unit, offset); const unitLen = unit.byteLength; offset += unitLen; // Default the sample's duration to the computed mp4SampleDuration, which will either be 1024 for AAC or 1152 for MPEG // In the case that we have 1 sample, this will be the duration. If we have more than one sample, the duration // becomes the PTS diff with the previous sample outputSamples.push(new Mp4Sample(true, mp4SampleDuration, unitLen, 0)); lastPTS = pts; } // We could end up with no audio samples if all input samples were overlapping with the previously remuxed ones const nbSamples = outputSamples.length; if (!nbSamples) { return; } // The next audio sample PTS should be equal to last sample PTS + duration const lastSample = outputSamples[outputSamples.length - 1]; this.nextAudioPts = nextAudioPts = lastPTS + scaleFactor * lastSample.duration; // Set the track samples from inputSamples to outputSamples before remuxing const moof = rawMPEG ? new Uint8Array(0) : MP4.moof(track.sequenceNumber++, firstPTS / scaleFactor, _extends({}, track, { samples: outputSamples })); // Clear the track samples. This also clears the samples array in the demuxer, since the reference is shared track.samples = []; const start = firstPTS / inputTimeScale; const end = nextAudioPts / inputTimeScale; const type = 'audio'; const audioData = { data1: moof, data2: mdat, startPTS: start, endPTS: end, startDTS: start, endDTS: end, type, hasAudio: true, hasVideo: false, nb: nbSamples }; this.isAudioContiguous = true; return audioData; } remuxEmptyAudio(track, timeOffset, contiguous, videoData) { const inputTimeScale = track.inputTimeScale; const mp4timeScale = track.samplerate ? track.samplerate : inputTimeScale; const scaleFactor = inputTimeScale / mp4timeScale; const nextAudioPts = this.nextAudioPts; // sync with video's timestamp const initDTS = this._initDTS; const init90kHz = initDTS.baseTime * 90000 / initDTS.timescale; const startDTS = (nextAudioPts !== null ? nextAudioPts : videoData.startDTS * inputTimeScale) + init90kHz; const endDTS = videoData.endDTS * inputTimeScale + init90kHz; // one sample's duration value const frameDuration = scaleFactor * AAC_SAMPLES_PER_FRAME; // samples count of this segment's duration const nbSamples = Math.ceil((endDTS - startDTS) / frameDuration); // silent frame const silentFrame = AAC.getSilentFrame(track.parsedCodec || track.manifestCodec || track.codec, track.channelCount); logger.warn('[mp4-remuxer]: remux empty Audio'); // Can't remux if we can't generate a silent frame... if (!silentFrame) { logger.trace('[mp4-remuxer]: Unable to remuxEmptyAudio since we were unable to get a silent frame for given audio codec'); return; } const samples = []; for (let i = 0; i < nbSamples; i++) { const stamp = startDTS + i * frameDuration; samples.push({ unit: silentFrame, pts: stamp, dts: stamp }); } track.samples = samples; return this.remuxAudio(track, timeOffset, contiguous, false); } } function normalizePts(value, reference) { let offset; if (reference === null) { return value; } if (reference < value) { // - 2^33 offset = -8589934592; } else { // + 2^33 offset = 8589934592; } /* PTS is 33bit (from 0 to 2^33 -1) if diff between value and reference is bigger than half of the amplitude (2^32) then it means that PTS looping occured. fill the gap */ while (Math.abs(value - reference) > 4294967296) { value += offset; } return value; } function findKeyframeIndex(samples) { for (let i = 0; i < samples.length; i++) { if (samples[i].key) { return i; } } return -1; } function flushTextTrackMetadataCueSamples(track, timeOffset, initPTS, initDTS) { const length = track.samples.length; if (!length) { return; } const inputTimeScale = track.inputTimeScale; for (let index = 0; index < length; index++) { const sample = track.samples[index]; // setting id3 pts, dts to relative time // using this._initPTS and this._initDTS to calculate relative time sample.pts = normalizePts(sample.pts - initPTS.baseTime * inputTimeScale / initPTS.timescale, timeOffset * inputTimeScale) / inputTimeScale; sample.dts = normalizePts(sample.dts - initDTS.baseTime * inputTimeScale / initDTS.timescale, timeOffset * inputTimeScale) / inputTimeScale; } const samples = track.samples; track.samples = []; return { samples }; } function flushTextTrackUserdataCueSamples(track, timeOffset, initPTS) { const length = track.samples.length; if (!length) { return; } const inputTimeScale = track.inputTimeScale; for (let index = 0; index < length; index++) { const sample = track.samples[index]; // setting text pts, dts to relative time // using this._initPTS and this._initDTS to calculate relative time sample.pts = normalizePts(sample.pts - initPTS.baseTime * inputTimeScale / initPTS.timescale, timeOffset * inputTimeScale) / inputTimeScale; } track.samples.sort((a, b) => a.pts - b.pts); const samples = track.samples; track.samples = []; return { samples }; } class Mp4Sample { constructor(isKeyframe, duration, size, cts) { this.size = void 0; this.duration = void 0; this.cts = void 0; this.flags = void 0; this.duration = duration; this.size = size; this.cts = cts; this.flags = { isLeading: 0, isDependedOn: 0, hasRedundancy: 0, degradPrio: 0, dependsOn: isKeyframe ? 2 : 1, isNonSync: isKeyframe ? 0 : 1 }; } } class PassThroughRemuxer { constructor() { this.emitInitSegment = false; this.audioCodec = void 0; this.videoCodec = void 0; this.initData = void 0; this.initPTS = null; this.initTracks = void 0; this.lastEndTime = null; } destroy() {} resetTimeStamp(defaultInitPTS) { this.initPTS = defaultInitPTS; this.lastEndTime = null; } resetNextTimestamp() { this.lastEndTime = null; } resetInitSegment(initSegment, audioCodec, videoCodec, decryptdata) { this.audioCodec = audioCodec; this.videoCodec = videoCodec; this.generateInitSegment(patchEncyptionData(initSegment, decryptdata)); this.emitInitSegment = true; } generateInitSegment(initSegment) { let { audioCodec, videoCodec } = this; if (!(initSegment != null && initSegment.byteLength)) { this.initTracks = undefined; this.initData = undefined; return; } const initData = this.initData = parseInitSegment(initSegment); // Get codec from initSegment or fallback to default if (initData.audio) { audioCodec = getParsedTrackCodec(initData.audio, ElementaryStreamTypes.AUDIO); } if (initData.video) { videoCodec = getParsedTrackCodec(initData.video, ElementaryStreamTypes.VIDEO); } const tracks = {}; if (initData.audio && initData.video) { tracks.audiovideo = { container: 'video/mp4', codec: audioCodec + ',' + videoCodec, initSegment, id: 'main' }; } else if (initData.audio) { tracks.audio = { container: 'audio/mp4', codec: audioCodec, initSegment, id: 'audio' }; } else if (initData.video) { tracks.video = { container: 'video/mp4', codec: videoCodec, initSegment, id: 'main' }; } else { logger.warn('[passthrough-remuxer.ts]: initSegment does not contain moov or trak boxes.'); } this.initTracks = tracks; } remux(audioTrack, videoTrack, id3Track, textTrack, timeOffset, accurateTimeOffset) { var _initData, _initData2; let { initPTS, lastEndTime } = this; const result = { audio: undefined, video: undefined, text: textTrack, id3: id3Track, initSegment: undefined }; // If we haven't yet set a lastEndDTS, or it was reset, set it to the provided timeOffset. We want to use the // lastEndDTS over timeOffset whenever possible; during progressive playback, the media source will not update // the media duration (which is what timeOffset is provided as) before we need to process the next chunk. if (!isFiniteNumber(lastEndTime)) { lastEndTime = this.lastEndTime = timeOffset || 0; } // The binary segment data is added to the videoTrack in the mp4demuxer. We don't check to see if the data is only // audio or video (or both); adding it to video was an arbitrary choice. const data = videoTrack.samples; if (!(data != null && data.length)) { return result; } const initSegment = { initPTS: undefined, timescale: 1 }; let initData = this.initData; if (!((_initData = initData) != null && _initData.length)) { this.generateInitSegment(data); initData = this.initData; } if (!((_initData2 = initData) != null && _initData2.length)) { // We can't remux if the initSegment could not be generated logger.warn('[passthrough-remuxer.ts]: Failed to generate initSegment.'); return result; } if (this.emitInitSegment) { initSegment.tracks = this.initTracks; this.emitInitSegment = false; } const duration = getDuration(data, initData); const startDTS = getStartDTS(initData, data); const decodeTime = startDTS === null ? timeOffset : startDTS; if (isInvalidInitPts(initPTS, decodeTime, timeOffset, duration) || initSegment.timescale !== initPTS.timescale && accurateTimeOffset) { initSegment.initPTS = decodeTime - timeOffset; if (initPTS && initPTS.timescale === 1) { logger.warn(`Adjusting initPTS by ${initSegment.initPTS - initPTS.baseTime}`); } this.initPTS = initPTS = { baseTime: initSegment.initPTS, timescale: 1 }; } const startTime = audioTrack ? decodeTime - initPTS.baseTime / initPTS.timescale : lastEndTime; const endTime = startTime + duration; offsetStartDTS(initData, data, initPTS.baseTime / initPTS.timescale); if (duration > 0) { this.lastEndTime = endTime; } else { logger.warn('Duration parsed from mp4 should be greater than zero'); this.resetNextTimestamp(); } const hasAudio = !!initData.audio; const hasVideo = !!initData.video; let type = ''; if (hasAudio) { type += 'audio'; } if (hasVideo) { type += 'video'; } const track = { data1: data, startPTS: startTime, startDTS: startTime, endPTS: endTime, endDTS: endTime, type, hasAudio, hasVideo, nb: 1, dropped: 0 }; result.audio = track.type === 'audio' ? track : undefined; result.video = track.type !== 'audio' ? track : undefined; result.initSegment = initSegment; result.id3 = flushTextTrackMetadataCueSamples(id3Track, timeOffset, initPTS, initPTS); if (textTrack.samples.length) { result.text = flushTextTrackUserdataCueSamples(textTrack, timeOffset, initPTS); } return result; } } function isInvalidInitPts(initPTS, startDTS, timeOffset, duration) { if (initPTS === null) { return true; } // InitPTS is invalid when distance from program would be more than segment duration or a minimum of one second const minDuration = Math.max(duration, 1); const startTime = startDTS - initPTS.baseTime / initPTS.timescale; return Math.abs(startTime - timeOffset) > minDuration; } function getParsedTrackCodec(track, type) { const parsedCodec = track == null ? void 0 : track.codec; if (parsedCodec && parsedCodec.length > 4) { return parsedCodec; } if (type === ElementaryStreamTypes.AUDIO) { if (parsedCodec === 'ec-3' || parsedCodec === 'ac-3' || parsedCodec === 'alac') { return parsedCodec; } if (parsedCodec === 'fLaC' || parsedCodec === 'Opus') { // Opting not to get `preferManagedMediaSource` from player config for isSupported() check for simplicity const preferManagedMediaSource = false; return getCodecCompatibleName(parsedCodec, preferManagedMediaSource); } const result = 'mp4a.40.5'; logger.info(`Parsed audio codec "${parsedCodec}" or audio object type not handled. Using "${result}"`); return result; } // Provide defaults based on codec type // This allows for some playback of some fmp4 playlists without CODECS defined in manifest logger.warn(`Unhandled video codec "${parsedCodec}"`); if (parsedCodec === 'hvc1' || parsedCodec === 'hev1') { return 'hvc1.1.6.L120.90'; } if (parsedCodec === 'av01') { return 'av01.0.04M.08'; } return 'avc1.42e01e'; } /** returns `undefined` is `self` is missing, e.g. in node */ const optionalSelf = typeof self !== 'undefined' ? self : undefined; let now; // performance.now() not available on WebWorker, at least on Safari Desktop try { now = self.performance.now.bind(self.performance); } catch (err) { logger.debug('Unable to use Performance API on this environment'); now = optionalSelf == null ? void 0 : optionalSelf.Date.now; } const muxConfig = [{ demux: MP4Demuxer, remux: PassThroughRemuxer }, { demux: TSDemuxer, remux: MP4Remuxer }, { demux: AACDemuxer, remux: MP4Remuxer }, { demux: MP3Demuxer, remux: MP4Remuxer }]; class Transmuxer { constructor(observer, typeSupported, config, vendor, id) { this.async = false; this.observer = void 0; this.typeSupported = void 0; this.config = void 0; this.vendor = void 0; this.id = void 0; this.demuxer = void 0; this.remuxer = void 0; this.decrypter = void 0; this.probe = void 0; this.decryptionPromise = null; this.transmuxConfig = void 0; this.currentTransmuxState = void 0; this.observer = observer; this.typeSupported = typeSupported; this.config = config; this.vendor = vendor; this.id = id; } configure(transmuxConfig) { this.transmuxConfig = transmuxConfig; if (this.decrypter) { this.decrypter.reset(); } } push(data, decryptdata, chunkMeta, state) { const stats = chunkMeta.transmuxing; stats.executeStart = now(); let uintData = new Uint8Array(data); const { currentTransmuxState, transmuxConfig } = this; if (state) { this.currentTransmuxState = state; } const { contiguous, discontinuity, trackSwitch, accurateTimeOffset, timeOffset, initSegmentChange } = state || currentTransmuxState; const { audioCodec, videoCodec, defaultInitPts, duration, initSegmentData } = transmuxConfig; const keyData = getEncryptionType(uintData, decryptdata); if (keyData && isFullSegmentEncryption(keyData.method)) { const decrypter = this.getDecrypter(); const aesMode = getAesModeFromFullSegmentMethod(keyData.method); // Software decryption is synchronous; webCrypto is not if (decrypter.isSync()) { // Software decryption is progressive. Progressive decryption may not return a result on each call. Any cached // data is handled in the flush() call let decryptedData = decrypter.softwareDecrypt(uintData, keyData.key.buffer, keyData.iv.buffer, aesMode); // For Low-Latency HLS Parts, decrypt in place, since part parsing is expected on push progress const loadingParts = chunkMeta.part > -1; if (loadingParts) { decryptedData = decrypter.flush(); } if (!decryptedData) { stats.executeEnd = now(); return emptyResult(chunkMeta); } uintData = new Uint8Array(decryptedData); } else { this.decryptionPromise = decrypter.webCryptoDecrypt(uintData, keyData.key.buffer, keyData.iv.buffer, aesMode).then(decryptedData => { // Calling push here is important; if flush() is called while this is still resolving, this ensures that // the decrypted data has been transmuxed const result = this.push(decryptedData, null, chunkMeta); this.decryptionPromise = null; return result; }); return this.decryptionPromise; } } const resetMuxers = this.needsProbing(discontinuity, trackSwitch); if (resetMuxers) { const error = this.configureTransmuxer(uintData); if (error) { logger.warn(`[transmuxer] ${error.message}`); this.observer.emit(Events.ERROR, Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_PARSING_ERROR, fatal: false, error, reason: error.message }); stats.executeEnd = now(); return emptyResult(chunkMeta); } } if (discontinuity || trackSwitch || initSegmentChange || resetMuxers) { this.resetInitSegment(initSegmentData, audioCodec, videoCodec, duration, decryptdata); } if (discontinuity || initSegmentChange || resetMuxers) { this.resetInitialTimestamp(defaultInitPts); } if (!contiguous) { this.resetContiguity(); } const result = this.transmux(uintData, keyData, timeOffset, accurateTimeOffset, chunkMeta); const currentState = this.currentTransmuxState; currentState.contiguous = true; currentState.discontinuity = false; currentState.trackSwitch = false; stats.executeEnd = now(); return result; } // Due to data caching, flush calls can produce more than one TransmuxerResult (hence the Array type) flush(chunkMeta) { const stats = chunkMeta.transmuxing; stats.executeStart = now(); const { decrypter, currentTransmuxState, decryptionPromise } = this; if (decryptionPromise) { // Upon resolution, the decryption promise calls push() and returns its TransmuxerResult up the stack. Therefore // only flushing is required for async decryption return decryptionPromise.then(() => { return this.flush(chunkMeta); }); } const transmuxResults = []; const { timeOffset } = currentTransmuxState; if (decrypter) { // The decrypter may have data cached, which needs to be demuxed. In this case we'll have two TransmuxResults // This happens in the case that we receive only 1 push call for a segment (either for non-progressive downloads, // or for progressive downloads with small segments) const decryptedData = decrypter.flush(); if (decryptedData) { // Push always returns a TransmuxerResult if decryptdata is null transmuxResults.push(this.push(decryptedData, null, chunkMeta)); } } const { demuxer, remuxer } = this; if (!demuxer || !remuxer) { // If probing failed, then Hls.js has been given content its not able to handle stats.executeEnd = now(); return [emptyResult(chunkMeta)]; } const demuxResultOrPromise = demuxer.flush(timeOffset); if (isPromise(demuxResultOrPromise)) { // Decrypt final SAMPLE-AES samples return demuxResultOrPromise.then(demuxResult => { this.flushRemux(transmuxResults, demuxResult, chunkMeta); return transmuxResults; }); } this.flushRemux(transmuxResults, demuxResultOrPromise, chunkMeta); return transmuxResults; } flushRemux(transmuxResults, demuxResult, chunkMeta) { const { audioTrack, videoTrack, id3Track, textTrack } = demuxResult; const { accurateTimeOffset, timeOffset } = this.currentTransmuxState; logger.log(`[transmuxer.ts]: Flushed fragment ${chunkMeta.sn}${chunkMeta.part > -1 ? ' p: ' + chunkMeta.part : ''} of level ${chunkMeta.level}`); const remuxResult = this.remuxer.remux(audioTrack, videoTrack, id3Track, textTrack, timeOffset, accurateTimeOffset, true, this.id); transmuxResults.push({ remuxResult, chunkMeta }); chunkMeta.transmuxing.executeEnd = now(); } resetInitialTimestamp(defaultInitPts) { const { demuxer, remuxer } = this; if (!demuxer || !remuxer) { return; } demuxer.resetTimeStamp(defaultInitPts); remuxer.resetTimeStamp(defaultInitPts); } resetContiguity() { const { demuxer, remuxer } = this; if (!demuxer || !remuxer) { return; } demuxer.resetContiguity(); remuxer.resetNextTimestamp(); } resetInitSegment(initSegmentData, audioCodec, videoCodec, trackDuration, decryptdata) { const { demuxer, remuxer } = this; if (!demuxer || !remuxer) { return; } demuxer.resetInitSegment(initSegmentData, audioCodec, videoCodec, trackDuration); remuxer.resetInitSegment(initSegmentData, audioCodec, videoCodec, decryptdata); } destroy() { if (this.demuxer) { this.demuxer.destroy(); this.demuxer = undefined; } if (this.remuxer) { this.remuxer.destroy(); this.remuxer = undefined; } } transmux(data, keyData, timeOffset, accurateTimeOffset, chunkMeta) { let result; if (keyData && keyData.method === 'SAMPLE-AES') { result = this.transmuxSampleAes(data, keyData, timeOffset, accurateTimeOffset, chunkMeta); } else { result = this.transmuxUnencrypted(data, timeOffset, accurateTimeOffset, chunkMeta); } return result; } transmuxUnencrypted(data, timeOffset, accurateTimeOffset, chunkMeta) { const { audioTrack, videoTrack, id3Track, textTrack } = this.demuxer.demux(data, timeOffset, false, !this.config.progressive); const remuxResult = this.remuxer.remux(audioTrack, videoTrack, id3Track, textTrack, timeOffset, accurateTimeOffset, false, this.id); return { remuxResult, chunkMeta }; } transmuxSampleAes(data, decryptData, timeOffset, accurateTimeOffset, chunkMeta) { return this.demuxer.demuxSampleAes(data, decryptData, timeOffset).then(demuxResult => { const remuxResult = this.remuxer.remux(demuxResult.audioTrack, demuxResult.videoTrack, demuxResult.id3Track, demuxResult.textTrack, timeOffset, accurateTimeOffset, false, this.id); return { remuxResult, chunkMeta }; }); } configureTransmuxer(data) { const { config, observer, typeSupported, vendor } = this; // probe for content type let mux; for (let i = 0, len = muxConfig.length; i < len; i++) { var _muxConfig$i$demux; if ((_muxConfig$i$demux = muxConfig[i].demux) != null && _muxConfig$i$demux.probe(data)) { mux = muxConfig[i]; break; } } if (!mux) { return new Error('Failed to find demuxer by probing fragment data'); } // so let's check that current remuxer and demuxer are still valid const demuxer = this.demuxer; const remuxer = this.remuxer; const Remuxer = mux.remux; const Demuxer = mux.demux; if (!remuxer || !(remuxer instanceof Remuxer)) { this.remuxer = new Remuxer(observer, config, typeSupported, vendor); } if (!demuxer || !(demuxer instanceof Demuxer)) { this.demuxer = new Demuxer(observer, config, typeSupported); this.probe = Demuxer.probe; } } needsProbing(discontinuity, trackSwitch) { // in case of continuity change, or track switch // we might switch from content type (AAC container to TS container, or TS to fmp4 for example) return !this.demuxer || !this.remuxer || discontinuity || trackSwitch; } getDecrypter() { let decrypter = this.decrypter; if (!decrypter) { decrypter = this.decrypter = new Decrypter(this.config); } return decrypter; } } function getEncryptionType(data, decryptData) { let encryptionType = null; if (data.byteLength > 0 && (decryptData == null ? void 0 : decryptData.key) != null && decryptData.iv !== null && decryptData.method != null) { encryptionType = decryptData; } return encryptionType; } const emptyResult = chunkMeta => ({ remuxResult: {}, chunkMeta }); function isPromise(p) { return 'then' in p && p.then instanceof Function; } class TransmuxConfig { constructor(audioCodec, videoCodec, initSegmentData, duration, defaultInitPts) { this.audioCodec = void 0; this.videoCodec = void 0; this.initSegmentData = void 0; this.duration = void 0; this.defaultInitPts = void 0; this.audioCodec = audioCodec; this.videoCodec = videoCodec; this.initSegmentData = initSegmentData; this.duration = duration; this.defaultInitPts = defaultInitPts || null; } } class TransmuxState { constructor(discontinuity, contiguous, accurateTimeOffset, trackSwitch, timeOffset, initSegmentChange) { this.discontinuity = void 0; this.contiguous = void 0; this.accurateTimeOffset = void 0; this.trackSwitch = void 0; this.timeOffset = void 0; this.initSegmentChange = void 0; this.discontinuity = discontinuity; this.contiguous = contiguous; this.accurateTimeOffset = accurateTimeOffset; this.trackSwitch = trackSwitch; this.timeOffset = timeOffset; this.initSegmentChange = initSegmentChange; } } var eventemitter3 = {exports: {}}; (function (module) { var has = Object.prototype.hasOwnProperty , prefix = '~'; /** * Constructor to create a storage for our `EE` objects. * An `Events` instance is a plain object whose properties are event names. * * @constructor * @private */ function Events() {} // // We try to not inherit from `Object.prototype`. In some engines creating an // instance in this way is faster than calling `Object.create(null)` directly. // If `Object.create(null)` is not supported we prefix the event names with a // character to make sure that the built-in object properties are not // overridden or used as an attack vector. // if (Object.create) { Events.prototype = Object.create(null); // // This hack is needed because the `__proto__` property is still inherited in // some old browsers like Android 4, iPhone 5.1, Opera 11 and Safari 5. // if (!new Events().__proto__) prefix = false; } /** * Representation of a single event listener. * * @param {Function} fn The listener function. * @param {*} context The context to invoke the listener with. * @param {Boolean} [once=false] Specify if the listener is a one-time listener. * @constructor * @private */ function EE(fn, context, once) { this.fn = fn; this.context = context; this.once = once || false; } /** * Add a listener for a given event. * * @param {EventEmitter} emitter Reference to the `EventEmitter` instance. * @param {(String|Symbol)} event The event name. * @param {Function} fn The listener function. * @param {*} context The context to invoke the listener with. * @param {Boolean} once Specify if the listener is a one-time listener. * @returns {EventEmitter} * @private */ function addListener(emitter, event, fn, context, once) { if (typeof fn !== 'function') { throw new TypeError('The listener must be a function'); } var listener = new EE(fn, context || emitter, once) , evt = prefix ? prefix + event : event; if (!emitter._events[evt]) emitter._events[evt] = listener, emitter._eventsCount++; else if (!emitter._events[evt].fn) emitter._events[evt].push(listener); else emitter._events[evt] = [emitter._events[evt], listener]; return emitter; } /** * Clear event by name. * * @param {EventEmitter} emitter Reference to the `EventEmitter` instance. * @param {(String|Symbol)} evt The Event name. * @private */ function clearEvent(emitter, evt) { if (--emitter._eventsCount === 0) emitter._events = new Events(); else delete emitter._events[evt]; } /** * Minimal `EventEmitter` interface that is molded against the Node.js * `EventEmitter` interface. * * @constructor * @public */ function EventEmitter() { this._events = new Events(); this._eventsCount = 0; } /** * Return an array listing the events for which the emitter has registered * listeners. * * @returns {Array} * @public */ EventEmitter.prototype.eventNames = function eventNames() { var names = [] , events , name; if (this._eventsCount === 0) return names; for (name in (events = this._events)) { if (has.call(events, name)) names.push(prefix ? name.slice(1) : name); } if (Object.getOwnPropertySymbols) { return names.concat(Object.getOwnPropertySymbols(events)); } return names; }; /** * Return the listeners registered for a given event. * * @param {(String|Symbol)} event The event name. * @returns {Array} The registered listeners. * @public */ EventEmitter.prototype.listeners = function listeners(event) { var evt = prefix ? prefix + event : event , handlers = this._events[evt]; if (!handlers) return []; if (handlers.fn) return [handlers.fn]; for (var i = 0, l = handlers.length, ee = new Array(l); i < l; i++) { ee[i] = handlers[i].fn; } return ee; }; /** * Return the number of listeners listening to a given event. * * @param {(String|Symbol)} event The event name. * @returns {Number} The number of listeners. * @public */ EventEmitter.prototype.listenerCount = function listenerCount(event) { var evt = prefix ? prefix + event : event , listeners = this._events[evt]; if (!listeners) return 0; if (listeners.fn) return 1; return listeners.length; }; /** * Calls each of the listeners registered for a given event. * * @param {(String|Symbol)} event The event name. * @returns {Boolean} `true` if the event had listeners, else `false`. * @public */ EventEmitter.prototype.emit = function emit(event, a1, a2, a3, a4, a5) { var evt = prefix ? prefix + event : event; if (!this._events[evt]) return false; var listeners = this._events[evt] , len = arguments.length , args , i; if (listeners.fn) { if (listeners.once) this.removeListener(event, listeners.fn, undefined, true); switch (len) { case 1: return listeners.fn.call(listeners.context), true; case 2: return listeners.fn.call(listeners.context, a1), true; case 3: return listeners.fn.call(listeners.context, a1, a2), true; case 4: return listeners.fn.call(listeners.context, a1, a2, a3), true; case 5: return listeners.fn.call(listeners.context, a1, a2, a3, a4), true; case 6: return listeners.fn.call(listeners.context, a1, a2, a3, a4, a5), true; } for (i = 1, args = new Array(len -1); i < len; i++) { args[i - 1] = arguments[i]; } listeners.fn.apply(listeners.context, args); } else { var length = listeners.length , j; for (i = 0; i < length; i++) { if (listeners[i].once) this.removeListener(event, listeners[i].fn, undefined, true); switch (len) { case 1: listeners[i].fn.call(listeners[i].context); break; case 2: listeners[i].fn.call(listeners[i].context, a1); break; case 3: listeners[i].fn.call(listeners[i].context, a1, a2); break; case 4: listeners[i].fn.call(listeners[i].context, a1, a2, a3); break; default: if (!args) for (j = 1, args = new Array(len -1); j < len; j++) { args[j - 1] = arguments[j]; } listeners[i].fn.apply(listeners[i].context, args); } } } return true; }; /** * Add a listener for a given event. * * @param {(String|Symbol)} event The event name. * @param {Function} fn The listener function. * @param {*} [context=this] The context to invoke the listener with. * @returns {EventEmitter} `this`. * @public */ EventEmitter.prototype.on = function on(event, fn, context) { return addListener(this, event, fn, context, false); }; /** * Add a one-time listener for a given event. * * @param {(String|Symbol)} event The event name. * @param {Function} fn The listener function. * @param {*} [context=this] The context to invoke the listener with. * @returns {EventEmitter} `this`. * @public */ EventEmitter.prototype.once = function once(event, fn, context) { return addListener(this, event, fn, context, true); }; /** * Remove the listeners of a given event. * * @param {(String|Symbol)} event The event name. * @param {Function} fn Only remove the listeners that match this function. * @param {*} context Only remove the listeners that have this context. * @param {Boolean} once Only remove one-time listeners. * @returns {EventEmitter} `this`. * @public */ EventEmitter.prototype.removeListener = function removeListener(event, fn, context, once) { var evt = prefix ? prefix + event : event; if (!this._events[evt]) return this; if (!fn) { clearEvent(this, evt); return this; } var listeners = this._events[evt]; if (listeners.fn) { if ( listeners.fn === fn && (!once || listeners.once) && (!context || listeners.context === context) ) { clearEvent(this, evt); } } else { for (var i = 0, events = [], length = listeners.length; i < length; i++) { if ( listeners[i].fn !== fn || (once && !listeners[i].once) || (context && listeners[i].context !== context) ) { events.push(listeners[i]); } } // // Reset the array, or remove it completely if we have no more listeners. // if (events.length) this._events[evt] = events.length === 1 ? events[0] : events; else clearEvent(this, evt); } return this; }; /** * Remove all listeners, or those of the specified event. * * @param {(String|Symbol)} [event] The event name. * @returns {EventEmitter} `this`. * @public */ EventEmitter.prototype.removeAllListeners = function removeAllListeners(event) { var evt; if (event) { evt = prefix ? prefix + event : event; if (this._events[evt]) clearEvent(this, evt); } else { this._events = new Events(); this._eventsCount = 0; } return this; }; // // Alias methods names because people roll like that. // EventEmitter.prototype.off = EventEmitter.prototype.removeListener; EventEmitter.prototype.addListener = EventEmitter.prototype.on; // // Expose the prefix. // EventEmitter.prefixed = prefix; // // Allow `EventEmitter` to be imported as module namespace. // EventEmitter.EventEmitter = EventEmitter; // // Expose the module. // { module.exports = EventEmitter; } } (eventemitter3)); var eventemitter3Exports = eventemitter3.exports; var EventEmitter = /*@__PURE__*/getDefaultExportFromCjs(eventemitter3Exports); class TransmuxerInterface { constructor(hls, id, onTransmuxComplete, onFlush) { this.error = null; this.hls = void 0; this.id = void 0; this.observer = void 0; this.frag = null; this.part = null; this.useWorker = void 0; this.workerContext = null; this.onwmsg = void 0; this.transmuxer = null; this.onTransmuxComplete = void 0; this.onFlush = void 0; const config = hls.config; this.hls = hls; this.id = id; this.useWorker = !!config.enableWorker; this.onTransmuxComplete = onTransmuxComplete; this.onFlush = onFlush; const forwardMessage = (ev, data) => { data = data || {}; data.frag = this.frag; data.id = this.id; if (ev === Events.ERROR) { this.error = data.error; } this.hls.trigger(ev, data); }; // forward events to main thread this.observer = new EventEmitter(); this.observer.on(Events.FRAG_DECRYPTED, forwardMessage); this.observer.on(Events.ERROR, forwardMessage); const m2tsTypeSupported = getM2TSSupportedAudioTypes(config.preferManagedMediaSource); // navigator.vendor is not always available in Web Worker // refer to https://developer.mozilla.org/en-US/docs/Web/API/WorkerGlobalScope/navigator const vendor = navigator.vendor; if (this.useWorker && typeof Worker !== 'undefined') { const canCreateWorker = config.workerPath || hasUMDWorker(); if (canCreateWorker) { try { if (config.workerPath) { logger.log(`loading Web Worker ${config.workerPath} for "${id}"`); this.workerContext = loadWorker(config.workerPath); } else { logger.log(`injecting Web Worker for "${id}"`); this.workerContext = injectWorker(); } this.onwmsg = ev => this.onWorkerMessage(ev); const { worker } = this.workerContext; worker.addEventListener('message', this.onwmsg); worker.onerror = event => { const error = new Error(`${event.message} (${event.filename}:${event.lineno})`); config.enableWorker = false; logger.warn(`Error in "${id}" Web Worker, fallback to inline`); this.hls.trigger(Events.ERROR, { type: ErrorTypes.OTHER_ERROR, details: ErrorDetails.INTERNAL_EXCEPTION, fatal: false, event: 'demuxerWorker', error }); }; worker.postMessage({ cmd: 'init', typeSupported: m2tsTypeSupported, vendor: vendor, id: id, config: JSON.stringify(config) }); } catch (err) { logger.warn(`Error setting up "${id}" Web Worker, fallback to inline`, err); this.resetWorker(); this.error = null; this.transmuxer = new Transmuxer(this.observer, m2tsTypeSupported, config, vendor, id); } return; } } this.transmuxer = new Transmuxer(this.observer, m2tsTypeSupported, config, vendor, id); } resetWorker() { if (this.workerContext) { const { worker, objectURL } = this.workerContext; if (objectURL) { // revoke the Object URL that was used to create transmuxer worker, so as not to leak it self.URL.revokeObjectURL(objectURL); } worker.removeEventListener('message', this.onwmsg); worker.onerror = null; worker.terminate(); this.workerContext = null; } } destroy() { if (this.workerContext) { this.resetWorker(); this.onwmsg = undefined; } else { const transmuxer = this.transmuxer; if (transmuxer) { transmuxer.destroy(); this.transmuxer = null; } } const observer = this.observer; if (observer) { observer.removeAllListeners(); } this.frag = null; // @ts-ignore this.observer = null; // @ts-ignore this.hls = null; } push(data, initSegmentData, audioCodec, videoCodec, frag, part, duration, accurateTimeOffset, chunkMeta, defaultInitPTS) { var _frag$initSegment, _lastFrag$initSegment; chunkMeta.transmuxing.start = self.performance.now(); const { transmuxer } = this; const timeOffset = part ? part.start : frag.start; // TODO: push "clear-lead" decrypt data for unencrypted fragments in streams with encrypted ones const decryptdata = frag.decryptdata; const lastFrag = this.frag; const discontinuity = !(lastFrag && frag.cc === lastFrag.cc); const trackSwitch = !(lastFrag && chunkMeta.level === lastFrag.level); const snDiff = lastFrag ? chunkMeta.sn - lastFrag.sn : -1; const partDiff = this.part ? chunkMeta.part - this.part.index : -1; const progressive = snDiff === 0 && chunkMeta.id > 1 && chunkMeta.id === (lastFrag == null ? void 0 : lastFrag.stats.chunkCount); const contiguous = !trackSwitch && (snDiff === 1 || snDiff === 0 && (partDiff === 1 || progressive && partDiff <= 0)); const now = self.performance.now(); if (trackSwitch || snDiff || frag.stats.parsing.start === 0) { frag.stats.parsing.start = now; } if (part && (partDiff || !contiguous)) { part.stats.parsing.start = now; } const initSegmentChange = !(lastFrag && ((_frag$initSegment = frag.initSegment) == null ? void 0 : _frag$initSegment.url) === ((_lastFrag$initSegment = lastFrag.initSegment) == null ? void 0 : _lastFrag$initSegment.url)); const state = new TransmuxState(discontinuity, contiguous, accurateTimeOffset, trackSwitch, timeOffset, initSegmentChange); if (!contiguous || discontinuity || initSegmentChange) { logger.log(`[transmuxer-interface, ${frag.type}]: Starting new transmux session for sn: ${chunkMeta.sn} p: ${chunkMeta.part} level: ${chunkMeta.level} id: ${chunkMeta.id} discontinuity: ${discontinuity} trackSwitch: ${trackSwitch} contiguous: ${contiguous} accurateTimeOffset: ${accurateTimeOffset} timeOffset: ${timeOffset} initSegmentChange: ${initSegmentChange}`); const config = new TransmuxConfig(audioCodec, videoCodec, initSegmentData, duration, defaultInitPTS); this.configureTransmuxer(config); } this.frag = frag; this.part = part; // Frags with sn of 'initSegment' are not transmuxed if (this.workerContext) { // post fragment payload as transferable objects for ArrayBuffer (no copy) this.workerContext.worker.postMessage({ cmd: 'demux', data, decryptdata, chunkMeta, state }, data instanceof ArrayBuffer ? [data] : []); } else if (transmuxer) { const transmuxResult = transmuxer.push(data, decryptdata, chunkMeta, state); if (isPromise(transmuxResult)) { transmuxer.async = true; transmuxResult.then(data => { this.handleTransmuxComplete(data); }).catch(error => { this.transmuxerError(error, chunkMeta, 'transmuxer-interface push error'); }); } else { transmuxer.async = false; this.handleTransmuxComplete(transmuxResult); } } } flush(chunkMeta) { chunkMeta.transmuxing.start = self.performance.now(); const { transmuxer } = this; if (this.workerContext) { this.workerContext.worker.postMessage({ cmd: 'flush', chunkMeta }); } else if (transmuxer) { let transmuxResult = transmuxer.flush(chunkMeta); const asyncFlush = isPromise(transmuxResult); if (asyncFlush || transmuxer.async) { if (!isPromise(transmuxResult)) { transmuxResult = Promise.resolve(transmuxResult); } transmuxResult.then(data => { this.handleFlushResult(data, chunkMeta); }).catch(error => { this.transmuxerError(error, chunkMeta, 'transmuxer-interface flush error'); }); } else { this.handleFlushResult(transmuxResult, chunkMeta); } } } transmuxerError(error, chunkMeta, reason) { if (!this.hls) { return; } this.error = error; this.hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_PARSING_ERROR, chunkMeta, fatal: false, error, err: error, reason }); } handleFlushResult(results, chunkMeta) { results.forEach(result => { this.handleTransmuxComplete(result); }); this.onFlush(chunkMeta); } onWorkerMessage(ev) { const data = ev.data; const hls = this.hls; switch (data.event) { case 'init': { var _this$workerContext; const objectURL = (_this$workerContext = this.workerContext) == null ? void 0 : _this$workerContext.objectURL; if (objectURL) { // revoke the Object URL that was used to create transmuxer worker, so as not to leak it self.URL.revokeObjectURL(objectURL); } break; } case 'transmuxComplete': { this.handleTransmuxComplete(data.data); break; } case 'flush': { this.onFlush(data.data); break; } // pass logs from the worker thread to the main logger case 'workerLog': if (logger[data.data.logType]) { logger[data.data.logType](data.data.message); } break; default: { data.data = data.data || {}; data.data.frag = this.frag; data.data.id = this.id; hls.trigger(data.event, data.data); break; } } } configureTransmuxer(config) { const { transmuxer } = this; if (this.workerContext) { this.workerContext.worker.postMessage({ cmd: 'configure', config }); } else if (transmuxer) { transmuxer.configure(config); } } handleTransmuxComplete(result) { result.chunkMeta.transmuxing.end = self.performance.now(); this.onTransmuxComplete(result); } } const STALL_MINIMUM_DURATION_MS = 250; const MAX_START_GAP_JUMP = 2.0; const SKIP_BUFFER_HOLE_STEP_SECONDS = 0.1; const SKIP_BUFFER_RANGE_START = 0.05; class GapController extends Logger { constructor(config, media, fragmentTracker, hls) { super('gap-controller', hls.logger); this.config = void 0; this.media = null; this.fragmentTracker = void 0; this.hls = void 0; this.nudgeRetry = 0; this.stallReported = false; this.stalled = null; this.moved = false; this.seeking = false; this.ended = 0; this.config = config; this.media = media; this.fragmentTracker = fragmentTracker; this.hls = hls; } destroy() { this.media = null; // @ts-ignore this.hls = this.fragmentTracker = null; } /** * Checks if the playhead is stuck within a gap, and if so, attempts to free it. * A gap is an unbuffered range between two buffered ranges (or the start and the first buffered range). * * @param lastCurrentTime - Previously read playhead position */ poll(lastCurrentTime, activeFrag, levelDetails, state) { const { config, media, stalled } = this; if (media === null) { return; } const { currentTime, seeking } = media; const seeked = this.seeking && !seeking; const beginSeek = !this.seeking && seeking; this.seeking = seeking; // The playhead is moving, no-op if (currentTime !== lastCurrentTime) { this.ended = 0; this.moved = true; if (!seeking) { this.nudgeRetry = 0; } if (stalled !== null) { // The playhead is now moving, but was previously stalled if (this.stallReported) { const _stalledDuration = self.performance.now() - stalled; this.warn(`playback not stuck anymore @${currentTime}, after ${Math.round(_stalledDuration)}ms`); this.stallReported = false; } this.stalled = null; } return; } // Clear stalled state when beginning or finishing seeking so that we don't report stalls coming out of a seek if (beginSeek || seeked) { this.stalled = null; return; } // The playhead should not be moving if (media.paused && !seeking || media.ended || media.playbackRate === 0 || !BufferHelper.getBuffered(media).length) { this.nudgeRetry = 0; return; } const bufferInfo = BufferHelper.bufferInfo(media, currentTime, 0); const nextStart = bufferInfo.nextStart || 0; if (seeking) { // Waiting for seeking in a buffered range to complete const hasEnoughBuffer = bufferInfo.len > MAX_START_GAP_JUMP; // Next buffered range is too far ahead to jump to while still seeking const noBufferGap = !nextStart || activeFrag && activeFrag.start <= currentTime || nextStart - currentTime > MAX_START_GAP_JUMP && !this.fragmentTracker.getPartialFragment(currentTime); if (hasEnoughBuffer || noBufferGap) { return; } // Reset moved state when seeking to a point in or before a gap this.moved = false; } // Skip start gaps if we haven't played, but the last poll detected the start of a stall // The addition poll gives the browser a chance to jump the gap for us if (!this.moved && this.stalled !== null) { // There is no playable buffer (seeked, waiting for buffer) const isBuffered = bufferInfo.len > 0; if (!isBuffered && !nextStart) { return; } // Jump start gaps within jump threshold const startJump = Math.max(nextStart, bufferInfo.start || 0) - currentTime; // When joining a live stream with audio tracks, account for live playlist window sliding by allowing // a larger jump over start gaps caused by the audio-stream-controller buffering a start fragment // that begins over 1 target duration after the video start position. const isLive = !!(levelDetails != null && levelDetails.live); const maxStartGapJump = isLive ? levelDetails.targetduration * 2 : MAX_START_GAP_JUMP; const partialOrGap = this.fragmentTracker.getPartialFragment(currentTime); if (startJump > 0 && (startJump <= maxStartGapJump || partialOrGap)) { if (!media.paused) { this._trySkipBufferHole(partialOrGap); } return; } } // Start tracking stall time const tnow = self.performance.now(); if (stalled === null) { this.stalled = tnow; return; } const stalledDuration = tnow - stalled; if (!seeking && stalledDuration >= STALL_MINIMUM_DURATION_MS) { // Dispatch MEDIA_ENDED when media.ended/ended event is not signalled at end of stream if (state === State.ENDED && !(levelDetails && levelDetails.live) && Math.abs(currentTime - ((levelDetails == null ? void 0 : levelDetails.edge) || 0)) < 1) { if (stalledDuration < 1000 || this.ended) { return; } this.ended = currentTime; this.hls.trigger(Events.MEDIA_ENDED, { stalled: true }); return; } // Report stalling after trying to fix this._reportStall(bufferInfo); if (!this.media) { return; } } const bufferedWithHoles = BufferHelper.bufferInfo(media, currentTime, config.maxBufferHole); this._tryFixBufferStall(bufferedWithHoles, stalledDuration); } /** * Detects and attempts to fix known buffer stalling issues. * @param bufferInfo - The properties of the current buffer. * @param stalledDurationMs - The amount of time Hls.js has been stalling for. * @private */ _tryFixBufferStall(bufferInfo, stalledDurationMs) { const { config, fragmentTracker, media } = this; if (media === null) { return; } const currentTime = media.currentTime; const partial = fragmentTracker.getPartialFragment(currentTime); if (partial) { // Try to skip over the buffer hole caused by a partial fragment // This method isn't limited by the size of the gap between buffered ranges const targetTime = this._trySkipBufferHole(partial); // we return here in this case, meaning // the branch below only executes when we haven't seeked to a new position if (targetTime || !this.media) { return; } } // if we haven't had to skip over a buffer hole of a partial fragment // we may just have to "nudge" the playlist as the browser decoding/rendering engine // needs to cross some sort of threshold covering all source-buffers content // to start playing properly. if ((bufferInfo.len > config.maxBufferHole || bufferInfo.nextStart && bufferInfo.nextStart - currentTime < config.maxBufferHole) && stalledDurationMs > config.highBufferWatchdogPeriod * 1000) { this.warn('Trying to nudge playhead over buffer-hole'); // Try to nudge currentTime over a buffer hole if we've been stalling for the configured amount of seconds // We only try to jump the hole if it's under the configured size // Reset stalled so to rearm watchdog timer this.stalled = null; this._tryNudgeBuffer(); } } /** * Triggers a BUFFER_STALLED_ERROR event, but only once per stall period. * @param bufferLen - The playhead distance from the end of the current buffer segment. * @private */ _reportStall(bufferInfo) { const { hls, media, stallReported } = this; if (!stallReported && media) { // Report stalled error once this.stallReported = true; const error = new Error(`Playback stalling at @${media.currentTime} due to low buffer (${JSON.stringify(bufferInfo)})`); this.warn(error.message); hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.BUFFER_STALLED_ERROR, fatal: false, error, buffer: bufferInfo.len }); } } /** * Attempts to fix buffer stalls by jumping over known gaps caused by partial fragments * @param partial - The partial fragment found at the current time (where playback is stalling). * @private */ _trySkipBufferHole(partial) { const { config, hls, media } = this; if (media === null) { return 0; } // Check if currentTime is between unbuffered regions of partial fragments const currentTime = media.currentTime; const bufferInfo = BufferHelper.bufferInfo(media, currentTime, 0); const startTime = currentTime < bufferInfo.start ? bufferInfo.start : bufferInfo.nextStart; if (startTime) { const bufferStarved = bufferInfo.len <= config.maxBufferHole; const waiting = bufferInfo.len > 0 && bufferInfo.len < 1 && media.readyState < 3; const gapLength = startTime - currentTime; if (gapLength > 0 && (bufferStarved || waiting)) { // Only allow large gaps to be skipped if it is a start gap, or all fragments in skip range are partial if (gapLength > config.maxBufferHole) { const { fragmentTracker } = this; let startGap = false; if (currentTime === 0) { const startFrag = fragmentTracker.getAppendedFrag(0, PlaylistLevelType.MAIN); if (startFrag && startTime < startFrag.end) { startGap = true; } } if (!startGap) { const startProvisioned = partial || fragmentTracker.getAppendedFrag(currentTime, PlaylistLevelType.MAIN); if (startProvisioned) { let moreToLoad = false; let pos = startProvisioned.end; while (pos < startTime) { const provisioned = fragmentTracker.getPartialFragment(pos); if (provisioned) { pos += provisioned.duration; } else { moreToLoad = true; break; } } if (moreToLoad) { return 0; } } } } const targetTime = Math.max(startTime + SKIP_BUFFER_RANGE_START, currentTime + SKIP_BUFFER_HOLE_STEP_SECONDS); this.warn(`skipping hole, adjusting currentTime from ${currentTime} to ${targetTime}`); this.moved = true; this.stalled = null; media.currentTime = targetTime; if (partial && !partial.gap) { const error = new Error(`fragment loaded with buffer holes, seeking from ${currentTime} to ${targetTime}`); hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.BUFFER_SEEK_OVER_HOLE, fatal: false, error, reason: error.message, frag: partial }); } return targetTime; } } return 0; } /** * Attempts to fix buffer stalls by advancing the mediaElement's current time by a small amount. * @private */ _tryNudgeBuffer() { const { config, hls, media, nudgeRetry } = this; if (media === null) { return; } const currentTime = media.currentTime; this.nudgeRetry++; if (nudgeRetry < config.nudgeMaxRetry) { const targetTime = currentTime + (nudgeRetry + 1) * config.nudgeOffset; // playback stalled in buffered area ... let's nudge currentTime to try to overcome this const error = new Error(`Nudging 'currentTime' from ${currentTime} to ${targetTime}`); this.warn(error.message); media.currentTime = targetTime; hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.BUFFER_NUDGE_ON_STALL, error, fatal: false }); } else { const error = new Error(`Playhead still not moving while enough data buffered @${currentTime} after ${config.nudgeMaxRetry} nudges`); this.error(error.message); hls.trigger(Events.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.BUFFER_STALLED_ERROR, error, fatal: true }); } } } const TICK_INTERVAL = 100; // how often to tick in ms class StreamController extends BaseStreamController { constructor(hls, fragmentTracker, keyLoader) { super(hls, fragmentTracker, keyLoader, 'stream-controller', PlaylistLevelType.MAIN); this.audioCodecSwap = false; this.gapController = null; this.level = -1; this._forceStartLoad = false; this.altAudio = false; this.audioOnly = false; this.fragPlaying = null; this.fragLastKbps = 0; this.couldBacktrack = false; this.backtrackFragment = null; this.audioCodecSwitch = false; this.videoBuffer = null; this.onMediaPlaying = () => { // tick to speed up FRAG_CHANGED triggering this.tick(); }; this.onMediaSeeked = () => { const media = this.media; const currentTime = media ? media.currentTime : null; if (isFiniteNumber(currentTime)) { this.log(`Media seeked to ${currentTime.toFixed(3)}`); } // If seeked was issued before buffer was appended do not tick immediately const bufferInfo = this.getMainFwdBufferInfo(); if (bufferInfo === null || bufferInfo.len === 0) { this.warn(`Main forward buffer length on "seeked" event ${bufferInfo ? bufferInfo.len : 'empty'})`); return; } // tick to speed up FRAG_CHANGED triggering this.tick(); }; this.registerListeners(); } registerListeners() { super.registerListeners(); const { hls } = this; hls.on(Events.MANIFEST_PARSED, this.onManifestParsed, this); hls.on(Events.LEVEL_LOADING, this.onLevelLoading, this); hls.on(Events.LEVEL_LOADED, this.onLevelLoaded, this); hls.on(Events.FRAG_LOAD_EMERGENCY_ABORTED, this.onFragLoadEmergencyAborted, this); hls.on(Events.AUDIO_TRACK_SWITCHING, this.onAudioTrackSwitching, this); hls.on(Events.AUDIO_TRACK_SWITCHED, this.onAudioTrackSwitched, this); hls.on(Events.BUFFER_CREATED, this.onBufferCreated, this); hls.on(Events.BUFFER_FLUSHED, this.onBufferFlushed, this); hls.on(Events.LEVELS_UPDATED, this.onLevelsUpdated, this); hls.on(Events.FRAG_BUFFERED, this.onFragBuffered, this); } unregisterListeners() { super.unregisterListeners(); const { hls } = this; hls.off(Events.MANIFEST_PARSED, this.onManifestParsed, this); hls.off(Events.LEVEL_LOADED, this.onLevelLoaded, this); hls.off(Events.FRAG_LOAD_EMERGENCY_ABORTED, this.onFragLoadEmergencyAborted, this); hls.off(Events.AUDIO_TRACK_SWITCHING, this.onAudioTrackSwitching, this); hls.off(Events.AUDIO_TRACK_SWITCHED, this.onAudioTrackSwitched, this); hls.off(Events.BUFFER_CREATED, this.onBufferCreated, this); hls.off(Events.BUFFER_FLUSHED, this.onBufferFlushed, this); hls.off(Events.LEVELS_UPDATED, this.onLevelsUpdated, this); hls.off(Events.FRAG_BUFFERED, this.onFragBuffered, this); } onHandlerDestroying() { // @ts-ignore this.onMediaPlaying = this.onMediaSeeked = null; this.unregisterListeners(); super.onHandlerDestroying(); } startLoad(startPosition) { if (this.levels) { const { lastCurrentTime, hls } = this; this.stopLoad(); this.setInterval(TICK_INTERVAL); this.level = -1; if (!this.startFragRequested) { // determine load level let startLevel = hls.startLevel; if (startLevel === -1) { if (hls.config.testBandwidth && this.levels.length > 1) { // -1 : guess start Level by doing a bitrate test by loading first fragment of lowest quality level startLevel = 0; this.bitrateTest = true; } else { startLevel = hls.firstAutoLevel; } } // set new level to playlist loader : this will trigger start level load // hls.nextLoadLevel remains until it is set to a new value or until a new frag is successfully loaded this.level = hls.nextLoadLevel = startLevel; this.loadedmetadata = false; } // if startPosition undefined but lastCurrentTime set, set startPosition to last currentTime if (lastCurrentTime > 0 && startPosition === -1) { this.log(`Override startPosition with lastCurrentTime @${lastCurrentTime.toFixed(3)}`); startPosition = lastCurrentTime; } this.state = State.IDLE; this.nextLoadPosition = this.startPosition = this.lastCurrentTime = startPosition; this.tick(); } else { this._forceStartLoad = true; this.state = State.STOPPED; } } stopLoad() { this._forceStartLoad = false; super.stopLoad(); } doTick() { switch (this.state) { case State.WAITING_LEVEL: { const { levels, level } = this; const currentLevel = levels == null ? void 0 : levels[level]; const details = currentLevel == null ? void 0 : currentLevel.details; if (details && (!details.live || this.levelLastLoaded === currentLevel)) { if (this.waitForCdnTuneIn(details)) { break; } this.state = State.IDLE; break; } else if (this.hls.nextLoadLevel !== this.level) { this.state = State.IDLE; break; } break; } case State.FRAG_LOADING_WAITING_RETRY: { var _this$media; const now = self.performance.now(); const retryDate = this.retryDate; // if current time is gt than retryDate, or if media seeking let's switch to IDLE state to retry loading if (!retryDate || now >= retryDate || (_this$media = this.media) != null && _this$media.seeking) { const { levels, level } = this; const currentLevel = levels == null ? void 0 : levels[level]; this.resetStartWhenNotLoaded(currentLevel || null); this.state = State.IDLE; } } break; } if (this.state === State.IDLE) { this.doTickIdle(); } this.onTickEnd(); } onTickEnd() { super.onTickEnd(); this.checkBuffer(); this.checkFragmentChanged(); } doTickIdle() { const { hls, levelLastLoaded, levels, media } = this; const { config, nextLoadLevel: level } = hls; // if start level not parsed yet OR // if video not attached AND start fragment already requested OR start frag prefetch not enabled // exit loop, as we either need more info (level not parsed) or we need media to be attached to load new fragment if (levelLastLoaded === null || !media && (this.startFragRequested || !config.startFragPrefetch)) { return; } // If the "main" level is audio-only but we are loading an alternate track in the same group, do not load anything if (this.altAudio && this.audioOnly) { return; } if (!(levels != null && levels[level])) { return; } const levelInfo = levels[level]; // if buffer length is less than maxBufLen try to load a new fragment const bufferInfo = this.getMainFwdBufferInfo(); if (bufferInfo === null) { return; } const lastDetails = this.getLevelDetails(); if (lastDetails && this._streamEnded(bufferInfo, lastDetails)) { const data = {}; if (this.altAudio) { data.type = 'video'; } this.hls.trigger(Events.BUFFER_EOS, data); this.state = State.ENDED; return; } // set next load level : this will trigger a playlist load if needed if (hls.loadLevel !== level && hls.manualLevel === -1) { this.log(`Adapting to level ${level} from level ${this.level}`); } this.level = hls.nextLoadLevel = level; const levelDetails = levelInfo.details; // if level info not retrieved yet, switch state and wait for level retrieval // if live playlist, ensure that new playlist has been refreshed to avoid loading/try to load // a useless and outdated fragment (that might even introduce load error if it is already out of the live playlist) if (!levelDetails || this.state === State.WAITING_LEVEL || levelDetails.live && this.levelLastLoaded !== levelInfo) { this.level = level; this.state = State.WAITING_LEVEL; return; } const bufferLen = bufferInfo.len; // compute max Buffer Length that we could get from this load level, based on level bitrate. don't buffer more than 60 MB and more than 30s const maxBufLen = this.getMaxBufferLength(levelInfo.maxBitrate); // Stay idle if we are still with buffer margins if (bufferLen >= maxBufLen) { return; } if (this.backtrackFragment && this.backtrackFragment.start > bufferInfo.end) { this.backtrackFragment = null; } const targetBufferTime = this.backtrackFragment ? this.backtrackFragment.start : bufferInfo.end; let frag = this.getNextFragment(targetBufferTime, levelDetails); // Avoid backtracking by loading an earlier segment in streams with segments that do not start with a key frame (flagged by `couldBacktrack`) if (this.couldBacktrack && !this.fragPrevious && frag && frag.sn !== 'initSegment' && this.fragmentTracker.getState(frag) !== FragmentState.OK) { var _this$backtrackFragme; const backtrackSn = ((_this$backtrackFragme = this.backtrackFragment) != null ? _this$backtrackFragme : frag).sn; const fragIdx = backtrackSn - levelDetails.startSN; const backtrackFrag = levelDetails.fragments[fragIdx - 1]; if (backtrackFrag && frag.cc === backtrackFrag.cc) { frag = backtrackFrag; this.fragmentTracker.removeFragment(backtrackFrag); } } else if (this.backtrackFragment && bufferInfo.len) { this.backtrackFragment = null; } // Avoid loop loading by using nextLoadPosition set for backtracking and skipping consecutive GAP tags if (frag && this.isLoopLoading(frag, targetBufferTime)) { const gapStart = frag.gap; if (!gapStart) { // Cleanup the fragment tracker before trying to find the next unbuffered fragment const type = this.audioOnly && !this.altAudio ? ElementaryStreamTypes.AUDIO : ElementaryStreamTypes.VIDEO; const mediaBuffer = (type === ElementaryStreamTypes.VIDEO ? this.videoBuffer : this.mediaBuffer) || this.media; if (mediaBuffer) { this.afterBufferFlushed(mediaBuffer, type, PlaylistLevelType.MAIN); } } frag = this.getNextFragmentLoopLoading(frag, levelDetails, bufferInfo, PlaylistLevelType.MAIN, maxBufLen); } if (!frag) { return; } if (frag.initSegment && !frag.initSegment.data && !this.bitrateTest) { frag = frag.initSegment; } this.loadFragment(frag, levelInfo, targetBufferTime); } loadFragment(frag, level, targetBufferTime) { // Check if fragment is not loaded const fragState = this.fragmentTracker.getState(frag); this.fragCurrent = frag; if (fragState === FragmentState.NOT_LOADED || fragState === FragmentState.PARTIAL) { if (frag.sn === 'initSegment') { this._loadInitSegment(frag, level); } else if (this.bitrateTest) { this.log(`Fragment ${frag.sn} of level ${frag.level} is being downloaded to test bitrate and will not be buffered`); this._loadBitrateTestFrag(frag, level); } else { this.startFragRequested = true; super.loadFragment(frag, level, targetBufferTime); } } else { this.clearTrackerIfNeeded(frag); } } getBufferedFrag(position) { return this.fragmentTracker.getBufferedFrag(position, PlaylistLevelType.MAIN); } followingBufferedFrag(frag) { if (frag) { // try to get range of next fragment (500ms after this range) return this.getBufferedFrag(frag.end + 0.5); } return null; } /* on immediate level switch : - pause playback if playing - cancel any pending load request - and trigger a buffer flush */ immediateLevelSwitch() { this.abortCurrentFrag(); this.flushMainBuffer(0, Number.POSITIVE_INFINITY); } /** * try to switch ASAP without breaking video playback: * in order to ensure smooth but quick level switching, * we need to find the next flushable buffer range * we should take into account new segment fetch time */ nextLevelSwitch() { const { levels, media } = this; // ensure that media is defined and that metadata are available (to retrieve currentTime) if (media != null && media.readyState) { let fetchdelay; const fragPlayingCurrent = this.getAppendedFrag(media.currentTime); if (fragPlayingCurrent && fragPlayingCurrent.start > 1) { // flush buffer preceding current fragment (flush until current fragment start offset) // minus 1s to avoid video freezing, that could happen if we flush keyframe of current video ... this.flushMainBuffer(0, fragPlayingCurrent.start - 1); } const levelDetails = this.getLevelDetails(); if (levelDetails != null && levelDetails.live) { const bufferInfo = this.getMainFwdBufferInfo(); // Do not flush in live stream with low buffer if (!bufferInfo || bufferInfo.len < levelDetails.targetduration * 2) { return; } } if (!media.paused && levels) { // add a safety delay of 1s const nextLevelId = this.hls.nextLoadLevel; const nextLevel = levels[nextLevelId]; const fragLastKbps = this.fragLastKbps; if (fragLastKbps && this.fragCurrent) { fetchdelay = this.fragCurrent.duration * nextLevel.maxBitrate / (1000 * fragLastKbps) + 1; } else { fetchdelay = 0; } } else { fetchdelay = 0; } // this.log('fetchdelay:'+fetchdelay); // find buffer range that will be reached once new fragment will be fetched const bufferedFrag = this.getBufferedFrag(media.currentTime + fetchdelay); if (bufferedFrag) { // we can flush buffer range following this one without stalling playback const nextBufferedFrag = this.followingBufferedFrag(bufferedFrag); if (nextBufferedFrag) { // if we are here, we can also cancel any loading/demuxing in progress, as they are useless this.abortCurrentFrag(); // start flush position is in next buffered frag. Leave some padding for non-independent segments and smoother playback. const maxStart = nextBufferedFrag.maxStartPTS ? nextBufferedFrag.maxStartPTS : nextBufferedFrag.start; const fragDuration = nextBufferedFrag.duration; const startPts = Math.max(bufferedFrag.end, maxStart + Math.min(Math.max(fragDuration - this.config.maxFragLookUpTolerance, fragDuration * (this.couldBacktrack ? 0.5 : 0.125)), fragDuration * (this.couldBacktrack ? 0.75 : 0.25))); this.flushMainBuffer(startPts, Number.POSITIVE_INFINITY); } } } } abortCurrentFrag() { const fragCurrent = this.fragCurrent; this.fragCurrent = null; this.backtrackFragment = null; if (fragCurrent) { fragCurrent.abortRequests(); this.fragmentTracker.removeFragment(fragCurrent); } switch (this.state) { case State.KEY_LOADING: case State.FRAG_LOADING: case State.FRAG_LOADING_WAITING_RETRY: case State.PARSING: case State.PARSED: this.state = State.IDLE; break; } this.nextLoadPosition = this.getLoadPosition(); } flushMainBuffer(startOffset, endOffset) { super.flushMainBuffer(startOffset, endOffset, this.altAudio ? 'video' : null); } onMediaAttached(event, data) { super.onMediaAttached(event, data); const media = data.media; media.addEventListener('playing', this.onMediaPlaying); media.addEventListener('seeked', this.onMediaSeeked); this.gapController = new GapController(this.config, media, this.fragmentTracker, this.hls); } onMediaDetaching() { const { media } = this; if (media) { media.removeEventListener('playing', this.onMediaPlaying); media.removeEventListener('seeked', this.onMediaSeeked); this.videoBuffer = null; } this.fragPlaying = null; if (this.gapController) { this.gapController.destroy(); this.gapController = null; } super.onMediaDetaching(); } onManifestLoading() { // reset buffer on manifest loading this.log('Trigger BUFFER_RESET'); this.hls.trigger(Events.BUFFER_RESET, undefined); this.fragmentTracker.removeAllFragments(); this.couldBacktrack = false; this.startPosition = this.lastCurrentTime = this.fragLastKbps = 0; this.levels = this.fragPlaying = this.backtrackFragment = this.levelLastLoaded = null; this.altAudio = this.audioOnly = this.startFragRequested = false; } onManifestParsed(event, data) { // detect if we have different kind of audio codecs used amongst playlists let aac = false; let heaac = false; data.levels.forEach(level => { const codec = level.audioCodec; if (codec) { aac = aac || codec.indexOf('mp4a.40.2') !== -1; heaac = heaac || codec.indexOf('mp4a.40.5') !== -1; } }); this.audioCodecSwitch = aac && heaac && !changeTypeSupported(); if (this.audioCodecSwitch) { this.log('Both AAC/HE-AAC audio found in levels; declaring level codec as HE-AAC'); } this.levels = data.levels; this.startFragRequested = false; } onLevelLoading(event, data) { const { levels } = this; if (!levels || this.state !== State.IDLE) { return; } const level = levels[data.level]; if (!level.details || level.details.live && this.levelLastLoaded !== level || this.waitForCdnTuneIn(level.details)) { this.state = State.WAITING_LEVEL; } } onLevelLoaded(event, data) { var _curLevel$details; const { levels } = this; const newLevelId = data.level; const newDetails = data.details; const duration = newDetails.totalduration; if (!levels) { this.warn(`Levels were reset while loading level ${newLevelId}`); return; } this.log(`Level ${newLevelId} loaded [${newDetails.startSN},${newDetails.endSN}]${newDetails.lastPartSn ? `[part-${newDetails.lastPartSn}-${newDetails.lastPartIndex}]` : ''}, cc [${newDetails.startCC}, ${newDetails.endCC}] duration:${duration}`); const curLevel = levels[newLevelId]; const fragCurrent = this.fragCurrent; if (fragCurrent && (this.state === State.FRAG_LOADING || this.state === State.FRAG_LOADING_WAITING_RETRY)) { if (fragCurrent.level !== data.level && fragCurrent.loader) { this.abortCurrentFrag(); } } let sliding = 0; if (newDetails.live || (_curLevel$details = curLevel.details) != null && _curLevel$details.live) { var _this$levelLastLoaded; this.checkLiveUpdate(newDetails); if (newDetails.deltaUpdateFailed) { return; } sliding = this.alignPlaylists(newDetails, curLevel.details, (_this$levelLastLoaded = this.levelLastLoaded) == null ? void 0 : _this$levelLastLoaded.details); } // override level info curLevel.details = newDetails; this.levelLastLoaded = curLevel; this.hls.trigger(Events.LEVEL_UPDATED, { details: newDetails, level: newLevelId }); // only switch back to IDLE state if we were waiting for level to start downloading a new fragment if (this.state === State.WAITING_LEVEL) { if (this.waitForCdnTuneIn(newDetails)) { // Wait for Low-Latency CDN Tune-in return; } this.state = State.IDLE; } if (!this.startFragRequested) { this.setStartPosition(newDetails, sliding); } else if (newDetails.live) { this.synchronizeToLiveEdge(newDetails); } // trigger handler right now this.tick(); } _handleFragmentLoadProgress(data) { var _frag$initSegment; const { frag, part, payload } = data; const { levels } = this; if (!levels) { this.warn(`Levels were reset while fragment load was in progress. Fragment ${frag.sn} of level ${frag.level} will not be buffered`); return; } const currentLevel = levels[frag.level]; const details = currentLevel.details; if (!details) { this.warn(`Dropping fragment ${frag.sn} of level ${frag.level} after level details were reset`); this.fragmentTracker.removeFragment(frag); return; } const videoCodec = currentLevel.videoCodec; // time Offset is accurate if level PTS is known, or if playlist is not sliding (not live) const accurateTimeOffset = details.PTSKnown || !details.live; const initSegmentData = (_frag$initSegment = frag.initSegment) == null ? void 0 : _frag$initSegment.data; const audioCodec = this._getAudioCodec(currentLevel); // transmux the MPEG-TS data to ISO-BMFF segments // this.log(`Transmuxing ${frag.sn} of [${details.startSN} ,${details.endSN}],level ${frag.level}, cc ${frag.cc}`); const transmuxer = this.transmuxer = this.transmuxer || new TransmuxerInterface(this.hls, PlaylistLevelType.MAIN, this._handleTransmuxComplete.bind(this), this._handleTransmuxerFlush.bind(this)); const partIndex = part ? part.index : -1; const partial = partIndex !== -1; const chunkMeta = new ChunkMetadata(frag.level, frag.sn, frag.stats.chunkCount, payload.byteLength, partIndex, partial); const initPTS = this.initPTS[frag.cc]; transmuxer.push(payload, initSegmentData, audioCodec, videoCodec, frag, part, details.totalduration, accurateTimeOffset, chunkMeta, initPTS); } onAudioTrackSwitching(event, data) { // if any URL found on new audio track, it is an alternate audio track const fromAltAudio = this.altAudio; const altAudio = !!data.url; // if we switch on main audio, ensure that main fragment scheduling is synced with media.buffered // don't do anything if we switch to alt audio: audio stream controller is handling it. // we will just have to change buffer scheduling on audioTrackSwitched if (!altAudio) { if (this.mediaBuffer !== this.media) { this.log('Switching on main audio, use media.buffered to schedule main fragment loading'); this.mediaBuffer = this.media; const fragCurrent = this.fragCurrent; // we need to refill audio buffer from main: cancel any frag loading to speed up audio switch if (fragCurrent) { this.log('Switching to main audio track, cancel main fragment load'); fragCurrent.abortRequests(); this.fragmentTracker.removeFragment(fragCurrent); } // destroy transmuxer to force init segment generation (following audio switch) this.resetTransmuxer(); // switch to IDLE state to load new fragment this.resetLoadingState(); } else if (this.audioOnly) { // Reset audio transmuxer so when switching back to main audio we're not still appending where we left off this.resetTransmuxer(); } const hls = this.hls; // If switching from alt to main audio, flush all audio and trigger track switched if (fromAltAudio) { hls.trigger(Events.BUFFER_FLUSHING, { startOffset: 0, endOffset: Number.POSITIVE_INFINITY, type: null }); this.fragmentTracker.removeAllFragments(); } hls.trigger(Events.AUDIO_TRACK_SWITCHED, data); } } onAudioTrackSwitched(event, data) { const trackId = data.id; const altAudio = !!this.hls.audioTracks[trackId].url; if (altAudio) { const videoBuffer = this.videoBuffer; // if we switched on alternate audio, ensure that main fragment scheduling is synced with video sourcebuffer buffered if (videoBuffer && this.mediaBuffer !== videoBuffer) { this.log('Switching on alternate audio, use video.buffered to schedule main fragment loading'); this.mediaBuffer = videoBuffer; } } this.altAudio = altAudio; this.tick(); } onBufferCreated(event, data) { const tracks = data.tracks; let mediaTrack; let name; let alternate = false; for (const type in tracks) { const track = tracks[type]; if (track.id === 'main') { name = type; mediaTrack = track; // keep video source buffer reference if (type === 'video') { const videoTrack = tracks[type]; if (videoTrack) { this.videoBuffer = videoTrack.buffer; } } } else { alternate = true; } } if (alternate && mediaTrack) { this.log(`Alternate track found, use ${name}.buffered to schedule main fragment loading`); this.mediaBuffer = mediaTrack.buffer; } else { this.mediaBuffer = this.media; } } onFragBuffered(event, data) { const { frag, part } = data; if (frag && frag.type !== PlaylistLevelType.MAIN) { return; } if (this.fragContextChanged(frag)) { // If a level switch was requested while a fragment was buffering, it will emit the FRAG_BUFFERED event upon completion // Avoid setting state back to IDLE, since that will interfere with a level switch this.warn(`Fragment ${frag.sn}${part ? ' p: ' + part.index : ''} of level ${frag.level} finished buffering, but was aborted. state: ${this.state}`); if (this.state === State.PARSED) { this.state = State.IDLE; } return; } const stats = part ? part.stats : frag.stats; this.fragLastKbps = Math.round(8 * stats.total / (stats.buffering.end - stats.loading.first)); if (frag.sn !== 'initSegment') { this.fragPrevious = frag; } this.fragBufferedComplete(frag, part); } onError(event, data) { var _data$context; if (data.fatal) { this.state = State.ERROR; return; } switch (data.details) { case ErrorDetails.FRAG_GAP: case ErrorDetails.FRAG_PARSING_ERROR: case ErrorDetails.FRAG_DECRYPT_ERROR: case ErrorDetails.FRAG_LOAD_ERROR: case ErrorDetails.FRAG_LOAD_TIMEOUT: case ErrorDetails.KEY_LOAD_ERROR: case ErrorDetails.KEY_LOAD_TIMEOUT: this.onFragmentOrKeyLoadError(PlaylistLevelType.MAIN, data); break; case ErrorDetails.LEVEL_LOAD_ERROR: case ErrorDetails.LEVEL_LOAD_TIMEOUT: case ErrorDetails.LEVEL_PARSING_ERROR: // in case of non fatal error while loading level, if level controller is not retrying to load level, switch back to IDLE if (!data.levelRetry && this.state === State.WAITING_LEVEL && ((_data$context = data.context) == null ? void 0 : _data$context.type) === PlaylistContextType.LEVEL) { this.state = State.IDLE; } break; case ErrorDetails.BUFFER_APPEND_ERROR: case ErrorDetails.BUFFER_FULL_ERROR: if (!data.parent || data.parent !== 'main') { return; } if (data.details === ErrorDetails.BUFFER_APPEND_ERROR) { this.resetLoadingState(); return; } if (this.reduceLengthAndFlushBuffer(data)) { this.flushMainBuffer(0, Number.POSITIVE_INFINITY); } break; case ErrorDetails.INTERNAL_EXCEPTION: this.recoverWorkerError(data); break; } } // Checks the health of the buffer and attempts to resolve playback stalls. checkBuffer() { const { media, gapController } = this; if (!media || !gapController || !media.readyState) { // Exit early if we don't have media or if the media hasn't buffered anything yet (readyState 0) return; } if (this.loadedmetadata || !BufferHelper.getBuffered(media).length) { // Resolve gaps using the main buffer, whose ranges are the intersections of the A/V sourcebuffers const state = this.state; const activeFrag = state !== State.IDLE ? this.fragCurrent : null; const levelDetails = this.getLevelDetails(); gapController.poll(this.lastCurrentTime, activeFrag, levelDetails, state); } this.lastCurrentTime = media.currentTime; } onFragLoadEmergencyAborted() { this.state = State.IDLE; // if loadedmetadata is not set, it means that we are emergency switch down on first frag // in that case, reset startFragRequested flag if (!this.loadedmetadata) { this.startFragRequested = false; this.nextLoadPosition = this.startPosition; } this.tickImmediate(); } onBufferFlushed(event, { type }) { if (type !== ElementaryStreamTypes.AUDIO || this.audioOnly && !this.altAudio) { const mediaBuffer = (type === ElementaryStreamTypes.VIDEO ? this.videoBuffer : this.mediaBuffer) || this.media; this.afterBufferFlushed(mediaBuffer, type, PlaylistLevelType.MAIN); this.tick(); } } onLevelsUpdated(event, data) { if (this.level > -1 && this.fragCurrent) { this.level = this.fragCurrent.level; } this.levels = data.levels; } swapAudioCodec() { this.audioCodecSwap = !this.audioCodecSwap; } /** * Seeks to the set startPosition if not equal to the mediaElement's current time. */ seekToStartPos() { const { media } = this; if (!media) { return; } const currentTime = media.currentTime; let startPosition = this.startPosition; // only adjust currentTime if different from startPosition or if startPosition not buffered // at that stage, there should be only one buffered range, as we reach that code after first fragment has been buffered if (startPosition >= 0 && currentTime < startPosition) { if (media.seeking) { this.log(`could not seek to ${startPosition}, already seeking at ${currentTime}`); return; } const buffered = BufferHelper.getBuffered(media); const bufferStart = buffered.length ? buffered.start(0) : 0; const delta = bufferStart - startPosition; if (delta > 0 && (delta < this.config.maxBufferHole || delta < this.config.maxFragLookUpTolerance)) { this.log(`adjusting start position by ${delta} to match buffer start`); startPosition += delta; this.startPosition = startPosition; } this.log(`seek to target start position ${startPosition} from current time ${currentTime}`); media.currentTime = startPosition; } } _getAudioCodec(currentLevel) { let audioCodec = this.config.defaultAudioCodec || currentLevel.audioCodec; if (this.audioCodecSwap && audioCodec) { this.log('Swapping audio codec'); if (audioCodec.indexOf('mp4a.40.5') !== -1) { audioCodec = 'mp4a.40.2'; } else { audioCodec = 'mp4a.40.5'; } } return audioCodec; } _loadBitrateTestFrag(frag, level) { frag.bitrateTest = true; this._doFragLoad(frag, level).then(data => { const { hls } = this; if (!data || this.fragContextChanged(frag)) { return; } level.fragmentError = 0; this.state = State.IDLE; this.startFragRequested = false; this.bitrateTest = false; const stats = frag.stats; // Bitrate tests fragments are neither parsed nor buffered stats.parsing.start = stats.parsing.end = stats.buffering.start = stats.buffering.end = self.performance.now(); hls.trigger(Events.FRAG_LOADED, data); frag.bitrateTest = false; }); } _handleTransmuxComplete(transmuxResult) { var _id3$samples; const id = 'main'; const { hls } = this; const { remuxResult, chunkMeta } = transmuxResult; const context = this.getCurrentContext(chunkMeta); if (!context) { this.resetWhenMissingContext(chunkMeta); return; } const { frag, part, level } = context; const { video, text, id3, initSegment } = remuxResult; const { details } = level; // The audio-stream-controller handles audio buffering if Hls.js is playing an alternate audio track const audio = this.altAudio ? undefined : remuxResult.audio; // Check if the current fragment has been aborted. We check this by first seeing if we're still playing the current level. // If we are, subsequently check if the currently loading fragment (fragCurrent) has changed. if (this.fragContextChanged(frag)) { this.fragmentTracker.removeFragment(frag); return; } this.state = State.PARSING; if (initSegment) { if (initSegment != null && initSegment.tracks) { const mapFragment = frag.initSegment || frag; this._bufferInitSegment(level, initSegment.tracks, mapFragment, chunkMeta); hls.trigger(Events.FRAG_PARSING_INIT_SEGMENT, { frag: mapFragment, id, tracks: initSegment.tracks }); } // This would be nice if Number.isFinite acted as a typeguard, but it doesn't. See: https://github.com/Microsoft/TypeScript/issues/10038 const initPTS = initSegment.initPTS; const timescale = initSegment.timescale; if (isFiniteNumber(initPTS)) { this.initPTS[frag.cc] = { baseTime: initPTS, timescale }; hls.trigger(Events.INIT_PTS_FOUND, { frag, id, initPTS, timescale }); } } // Avoid buffering if backtracking this fragment if (video && details && frag.sn !== 'initSegment') { const prevFrag = details.fragments[frag.sn - 1 - details.startSN]; const isFirstFragment = frag.sn === details.startSN; const isFirstInDiscontinuity = !prevFrag || frag.cc > prevFrag.cc; if (remuxResult.independent !== false) { const { startPTS, endPTS, startDTS, endDTS } = video; if (part) { part.elementaryStreams[video.type] = { startPTS, endPTS, startDTS, endDTS }; } else { if (video.firstKeyFrame && video.independent && chunkMeta.id === 1 && !isFirstInDiscontinuity) { this.couldBacktrack = true; } if (video.dropped && video.independent) { // Backtrack if dropped frames create a gap after currentTime const bufferInfo = this.getMainFwdBufferInfo(); const targetBufferTime = (bufferInfo ? bufferInfo.end : this.getLoadPosition()) + this.config.maxBufferHole; const startTime = video.firstKeyFramePTS ? video.firstKeyFramePTS : startPTS; if (!isFirstFragment && targetBufferTime < startTime - this.config.maxBufferHole && !isFirstInDiscontinuity) { this.backtrack(frag); return; } else if (isFirstInDiscontinuity) { // Mark segment with a gap to avoid loop loading frag.gap = true; } // Set video stream start to fragment start so that truncated samples do not distort the timeline, and mark it partial frag.setElementaryStreamInfo(video.type, frag.start, endPTS, frag.start, endDTS, true); } else if (isFirstFragment && startPTS > MAX_START_GAP_JUMP) { // Mark segment with a gap to skip large start gap frag.gap = true; } } frag.setElementaryStreamInfo(video.type, startPTS, endPTS, startDTS, endDTS); if (this.backtrackFragment) { this.backtrackFragment = frag; } this.bufferFragmentData(video, frag, part, chunkMeta, isFirstFragment || isFirstInDiscontinuity); } else if (isFirstFragment || isFirstInDiscontinuity) { // Mark segment with a gap to avoid loop loading frag.gap = true; } else { this.backtrack(frag); return; } } if (audio) { const { startPTS, endPTS, startDTS, endDTS } = audio; if (part) { part.elementaryStreams[ElementaryStreamTypes.AUDIO] = { startPTS, endPTS, startDTS, endDTS }; } frag.setElementaryStreamInfo(ElementaryStreamTypes.AUDIO, startPTS, endPTS, startDTS, endDTS); this.bufferFragmentData(audio, frag, part, chunkMeta); } if (details && id3 != null && (_id3$samples = id3.samples) != null && _id3$samples.length) { const emittedID3 = { id, frag, details, samples: id3.samples }; hls.trigger(Events.FRAG_PARSING_METADATA, emittedID3); } if (details && text) { const emittedText = { id, frag, details, samples: text.samples }; hls.trigger(Events.FRAG_PARSING_USERDATA, emittedText); } } _bufferInitSegment(currentLevel, tracks, frag, chunkMeta) { if (this.state !== State.PARSING) { return; } this.audioOnly = !!tracks.audio && !tracks.video; // if audio track is expected to come from audio stream controller, discard any coming from main if (this.altAudio && !this.audioOnly) { delete tracks.audio; } // include levelCodec in audio and video tracks const { audio, video, audiovideo } = tracks; if (audio) { let audioCodec = currentLevel.audioCodec; const ua = navigator.userAgent.toLowerCase(); if (this.audioCodecSwitch) { if (audioCodec) { if (audioCodec.indexOf('mp4a.40.5') !== -1) { audioCodec = 'mp4a.40.2'; } else { audioCodec = 'mp4a.40.5'; } } // In the case that AAC and HE-AAC audio codecs are signalled in manifest, // force HE-AAC, as it seems that most browsers prefers it. // don't force HE-AAC if mono stream, or in Firefox if (audio.metadata.channelCount !== 1 && ua.indexOf('firefox') === -1) { audioCodec = 'mp4a.40.5'; } } // HE-AAC is broken on Android, always signal audio codec as AAC even if variant manifest states otherwise if (audioCodec && audioCodec.indexOf('mp4a.40.5') !== -1 && ua.indexOf('android') !== -1 && audio.container !== 'audio/mpeg') { // Exclude mpeg audio audioCodec = 'mp4a.40.2'; this.log(`Android: force audio codec to ${audioCodec}`); } if (currentLevel.audioCodec && currentLevel.audioCodec !== audioCodec) { this.log(`Swapping manifest audio codec "${currentLevel.audioCodec}" for "${audioCodec}"`); } audio.levelCodec = audioCodec; audio.id = 'main'; this.log(`Init audio buffer, container:${audio.container}, codecs[selected/level/parsed]=[${audioCodec || ''}/${currentLevel.audioCodec || ''}/${audio.codec}]`); } if (video) { video.levelCodec = currentLevel.videoCodec; video.id = 'main'; this.log(`Init video buffer, container:${video.container}, codecs[level/parsed]=[${currentLevel.videoCodec || ''}/${video.codec}]`); } if (audiovideo) { this.log(`Init audiovideo buffer, container:${audiovideo.container}, codecs[level/parsed]=[${currentLevel.codecs}/${audiovideo.codec}]`); } this.hls.trigger(Events.BUFFER_CODECS, tracks); // loop through tracks that are going to be provided to bufferController Object.keys(tracks).forEach(trackName => { const track = tracks[trackName]; const initSegment = track.initSegment; if (initSegment != null && initSegment.byteLength) { this.hls.trigger(Events.BUFFER_APPENDING, { type: trackName, data: initSegment, frag, part: null, chunkMeta, parent: frag.type }); } }); // trigger handler right now this.tickImmediate(); } getMainFwdBufferInfo() { return this.getFwdBufferInfo(this.mediaBuffer ? this.mediaBuffer : this.media, PlaylistLevelType.MAIN); } backtrack(frag) { this.couldBacktrack = true; // Causes findFragments to backtrack through fragments to find the keyframe this.backtrackFragment = frag; this.resetTransmuxer(); this.flushBufferGap(frag); this.fragmentTracker.removeFragment(frag); this.fragPrevious = null; this.nextLoadPosition = frag.start; this.state = State.IDLE; } checkFragmentChanged() { const video = this.media; let fragPlayingCurrent = null; if (video && video.readyState > 1 && video.seeking === false) { const currentTime = video.currentTime; /* if video element is in seeked state, currentTime can only increase. (assuming that playback rate is positive ...) As sometimes currentTime jumps back to zero after a media decode error, check this, to avoid seeking back to wrong position after a media decode error */ if (BufferHelper.isBuffered(video, currentTime)) { fragPlayingCurrent = this.getAppendedFrag(currentTime); } else if (BufferHelper.isBuffered(video, currentTime + 0.1)) { /* ensure that FRAG_CHANGED event is triggered at startup, when first video frame is displayed and playback is paused. add a tolerance of 100ms, in case current position is not buffered, check if current pos+100ms is buffered and use that buffer range for FRAG_CHANGED event reporting */ fragPlayingCurrent = this.getAppendedFrag(currentTime + 0.1); } if (fragPlayingCurrent) { this.backtrackFragment = null; const fragPlaying = this.fragPlaying; const fragCurrentLevel = fragPlayingCurrent.level; if (!fragPlaying || fragPlayingCurrent.sn !== fragPlaying.sn || fragPlaying.level !== fragCurrentLevel) { this.fragPlaying = fragPlayingCurrent; this.hls.trigger(Events.FRAG_CHANGED, { frag: fragPlayingCurrent }); if (!fragPlaying || fragPlaying.level !== fragCurrentLevel) { this.hls.trigger(Events.LEVEL_SWITCHED, { level: fragCurrentLevel }); } } } } } get nextLevel() { const frag = this.nextBufferedFrag; if (frag) { return frag.level; } return -1; } get currentFrag() { const media = this.media; if (media) { return this.fragPlaying || this.getAppendedFrag(media.currentTime); } return null; } get currentProgramDateTime() { const media = this.media; if (media) { const currentTime = media.currentTime; const frag = this.currentFrag; if (frag && isFiniteNumber(currentTime) && isFiniteNumber(frag.programDateTime)) { const epocMs = frag.programDateTime + (currentTime - frag.start) * 1000; return new Date(epocMs); } } return null; } get currentLevel() { const frag = this.currentFrag; if (frag) { return frag.level; } return -1; } get nextBufferedFrag() { const frag = this.currentFrag; if (frag) { return this.followingBufferedFrag(frag); } return null; } get forceStartLoad() { return this._forceStartLoad; } } /** * The `Hls` class is the core of the HLS.js library used to instantiate player instances. * @public */ class Hls { /** * Get the video-dev/hls.js package version. */ static get version() { return "1.5.2-0.canary.9947"; } /** * Check if the required MediaSource Extensions are available. */ static isMSESupported() { return isMSESupported(); } /** * Check if MediaSource Extensions are available and isTypeSupported checks pass for any baseline codecs. */ static isSupported() { return isSupported(); } /** * Get the MediaSource global used for MSE playback (ManagedMediaSource, MediaSource, or WebKitMediaSource). */ static getMediaSource() { return getMediaSource(); } static get Events() { return Events; } static get ErrorTypes() { return ErrorTypes; } static get ErrorDetails() { return ErrorDetails; } /** * Get the default configuration applied to new instances. */ static get DefaultConfig() { if (!Hls.defaultConfig) { return hlsDefaultConfig; } return Hls.defaultConfig; } /** * Replace the default configuration applied to new instances. */ static set DefaultConfig(defaultConfig) { Hls.defaultConfig = defaultConfig; } /** * Creates an instance of an HLS client that can attach to exactly one `HTMLMediaElement`. * @param userConfig - Configuration options applied over `Hls.DefaultConfig` */ constructor(userConfig = {}) { /** * The runtime configuration used by the player. At instantiation this is combination of `hls.userConfig` merged over `Hls.DefaultConfig`. */ this.config = void 0; /** * The configuration object provided on player instantiation. */ this.userConfig = void 0; /** * The logger functions used by this player instance, configured on player instantiation. */ this.logger = void 0; this.coreComponents = void 0; this.networkControllers = void 0; this.started = false; this._emitter = new EventEmitter(); this._autoLevelCapping = -1; this._maxHdcpLevel = null; this.abrController = void 0; this.bufferController = void 0; this.capLevelController = void 0; this.latencyController = void 0; this.levelController = void 0; this.streamController = void 0; this.audioTrackController = void 0; this.subtitleTrackController = void 0; this.emeController = void 0; this.cmcdController = void 0; this._media = null; this.url = null; this.triggeringException = void 0; const logger = this.logger = enableLogs(userConfig.debug || false, 'Hls instance'); const config = this.config = mergeConfig(Hls.DefaultConfig, userConfig, logger); this.userConfig = userConfig; if (config.progressive) { enableStreamingMode(config, logger); } // core controllers and network loaders const { abrController: ConfigAbrController, bufferController: ConfigBufferController, capLevelController: ConfigCapLevelController, errorController: ConfigErrorController, fpsController: ConfigFpsController } = config; const errorController = new ConfigErrorController(this); const abrController = this.abrController = new ConfigAbrController(this); const bufferController = this.bufferController = new ConfigBufferController(this); const capLevelController = this.capLevelController = new ConfigCapLevelController(this); const fpsController = new ConfigFpsController(this); const playListLoader = new PlaylistLoader(this); const id3TrackController = new ID3TrackController(this); const ConfigContentSteeringController = config.contentSteeringController; // ConentSteeringController is defined before LevelController to receive Multivariant Playlist events first const contentSteering = ConfigContentSteeringController ? new ConfigContentSteeringController(this) : null; const levelController = this.levelController = new LevelController(this, contentSteering); // FragmentTracker must be defined before StreamController because the order of event handling is important const fragmentTracker = new FragmentTracker(this); const keyLoader = new KeyLoader(this.config); const streamController = this.streamController = new StreamController(this, fragmentTracker, keyLoader); // Cap level controller uses streamController to flush the buffer capLevelController.setStreamController(streamController); // fpsController uses streamController to switch when frames are being dropped fpsController.setStreamController(streamController); const networkControllers = [playListLoader, levelController, streamController]; if (contentSteering) { networkControllers.splice(1, 0, contentSteering); } this.networkControllers = networkControllers; const coreComponents = [abrController, bufferController, capLevelController, fpsController, id3TrackController, fragmentTracker]; this.audioTrackController = this.createController(config.audioTrackController, networkControllers); const AudioStreamControllerClass = config.audioStreamController; if (AudioStreamControllerClass) { networkControllers.push(new AudioStreamControllerClass(this, fragmentTracker, keyLoader)); } // subtitleTrackController must be defined before subtitleStreamController because the order of event handling is important this.subtitleTrackController = this.createController(config.subtitleTrackController, networkControllers); const SubtitleStreamControllerClass = config.subtitleStreamController; if (SubtitleStreamControllerClass) { networkControllers.push(new SubtitleStreamControllerClass(this, fragmentTracker, keyLoader)); } this.createController(config.timelineController, coreComponents); keyLoader.emeController = this.emeController = this.createController(config.emeController, coreComponents); this.cmcdController = this.createController(config.cmcdController, coreComponents); this.latencyController = this.createController(LatencyController, coreComponents); this.coreComponents = coreComponents; // Error controller handles errors before and after all other controllers // This listener will be invoked after all other controllers error listeners networkControllers.push(errorController); const onErrorOut = errorController.onErrorOut; if (typeof onErrorOut === 'function') { this.on(Events.ERROR, onErrorOut, errorController); } } createController(ControllerClass, components) { if (ControllerClass) { const controllerInstance = new ControllerClass(this); if (components) { components.push(controllerInstance); } return controllerInstance; } return null; } // Delegate the EventEmitter through the public API of Hls.js on(event, listener, context = this) { this._emitter.on(event, listener, context); } once(event, listener, context = this) { this._emitter.once(event, listener, context); } removeAllListeners(event) { this._emitter.removeAllListeners(event); } off(event, listener, context = this, once) { this._emitter.off(event, listener, context, once); } listeners(event) { return this._emitter.listeners(event); } emit(event, name, eventObject) { return this._emitter.emit(event, name, eventObject); } trigger(event, eventObject) { if (this.config.debug) { return this.emit(event, event, eventObject); } else { try { return this.emit(event, event, eventObject); } catch (error) { this.logger.error('An internal error happened while handling event ' + event + '. Error message: "' + error.message + '". Here is a stacktrace:', error); // Prevent recursion in error event handlers that throw #5497 if (!this.triggeringException) { this.triggeringException = true; const fatal = event === Events.ERROR; this.trigger(Events.ERROR, { type: ErrorTypes.OTHER_ERROR, details: ErrorDetails.INTERNAL_EXCEPTION, fatal, event, error }); this.triggeringException = false; } } } return false; } listenerCount(event) { return this._emitter.listenerCount(event); } /** * Dispose of the instance */ destroy() { this.logger.log('destroy'); this.trigger(Events.DESTROYING, undefined); this.detachMedia(); this.removeAllListeners(); this._autoLevelCapping = -1; this.url = null; this.networkControllers.forEach(component => component.destroy()); this.networkControllers.length = 0; this.coreComponents.forEach(component => component.destroy()); this.coreComponents.length = 0; // Remove any references that could be held in config options or callbacks const config = this.config; config.xhrSetup = config.fetchSetup = undefined; // @ts-ignore this.userConfig = null; } /** * Attaches Hls.js to a media element */ attachMedia(media) { this.logger.log('attachMedia'); this._media = media; this.trigger(Events.MEDIA_ATTACHING, { media: media }); } /** * Detach Hls.js from the media */ detachMedia() { this.logger.log('detachMedia'); this.trigger(Events.MEDIA_DETACHING, undefined); this._media = null; } /** * Set the source URL. Can be relative or absolute. */ loadSource(url) { this.stopLoad(); const media = this.media; const loadedSource = this.url; const loadingSource = this.url = urlToolkitExports.buildAbsoluteURL(self.location.href, url, { alwaysNormalize: true }); this._autoLevelCapping = -1; this._maxHdcpLevel = null; this.logger.log(`loadSource:${loadingSource}`); if (media && loadedSource && (loadedSource !== loadingSource || this.bufferController.hasSourceTypes())) { this.detachMedia(); this.attachMedia(media); } // when attaching to a source URL, trigger a playlist load this.trigger(Events.MANIFEST_LOADING, { url: url }); } /** * Start loading data from the stream source. * Depending on default config, client starts loading automatically when a source is set. * * @param startPosition - Set the start position to stream from. * Defaults to -1 (None: starts from earliest point) */ startLoad(startPosition = -1) { this.logger.log(`startLoad(${startPosition})`); this.started = true; this.networkControllers.forEach(controller => { controller.startLoad(startPosition); }); } /** * Stop loading of any stream data. */ stopLoad() { this.logger.log('stopLoad'); this.started = false; this.networkControllers.forEach(controller => { controller.stopLoad(); }); } /** * Resumes stream controller segment loading if previously started. */ resumeBuffering() { if (this.started) { this.networkControllers.forEach(controller => { if ('fragmentLoader' in controller) { controller.startLoad(-1); } }); } } /** * Stops stream controller segment loading without changing 'started' state like stopLoad(). * This allows for media buffering to be paused without interupting playlist loading. */ pauseBuffering() { this.networkControllers.forEach(controller => { if ('fragmentLoader' in controller) { controller.stopLoad(); } }); } /** * Swap through possible audio codecs in the stream (for example to switch from stereo to 5.1) */ swapAudioCodec() { this.logger.log('swapAudioCodec'); this.streamController.swapAudioCodec(); } /** * When the media-element fails, this allows to detach and then re-attach it * as one call (convenience method). * * Automatic recovery of media-errors by this process is configurable. */ recoverMediaError() { this.logger.log('recoverMediaError'); const media = this._media; this.detachMedia(); if (media) { this.attachMedia(media); } } removeLevel(levelIndex) { this.levelController.removeLevel(levelIndex); } /** * @returns an array of levels (variants) sorted by HDCP-LEVEL, RESOLUTION (height), FRAME-RATE, CODECS, VIDEO-RANGE, and BANDWIDTH */ get levels() { const levels = this.levelController.levels; return levels ? levels : []; } /** * Index of quality level (variant) currently played */ get currentLevel() { return this.streamController.currentLevel; } /** * Set quality level index immediately. This will flush the current buffer to replace the quality asap. That means playback will interrupt at least shortly to re-buffer and re-sync eventually. Set to -1 for automatic level selection. */ set currentLevel(newLevel) { this.logger.log(`set currentLevel:${newLevel}`); this.levelController.manualLevel = newLevel; this.streamController.immediateLevelSwitch(); } /** * Index of next quality level loaded as scheduled by stream controller. */ get nextLevel() { return this.streamController.nextLevel; } /** * Set quality level index for next loaded data. * This will switch the video quality asap, without interrupting playback. * May abort current loading of data, and flush parts of buffer (outside currently played fragment region). * @param newLevel - Pass -1 for automatic level selection */ set nextLevel(newLevel) { this.logger.log(`set nextLevel:${newLevel}`); this.levelController.manualLevel = newLevel; this.streamController.nextLevelSwitch(); } /** * Return the quality level of the currently or last (of none is loaded currently) segment */ get loadLevel() { return this.levelController.level; } /** * Set quality level index for next loaded data in a conservative way. * This will switch the quality without flushing, but interrupt current loading. * Thus the moment when the quality switch will appear in effect will only be after the already existing buffer. * @param newLevel - Pass -1 for automatic level selection */ set loadLevel(newLevel) { this.logger.log(`set loadLevel:${newLevel}`); this.levelController.manualLevel = newLevel; } /** * get next quality level loaded */ get nextLoadLevel() { return this.levelController.nextLoadLevel; } /** * Set quality level of next loaded segment in a fully "non-destructive" way. * Same as `loadLevel` but will wait for next switch (until current loading is done). */ set nextLoadLevel(level) { this.levelController.nextLoadLevel = level; } /** * Return "first level": like a default level, if not set, * falls back to index of first level referenced in manifest */ get firstLevel() { return Math.max(this.levelController.firstLevel, this.minAutoLevel); } /** * Sets "first-level", see getter. */ set firstLevel(newLevel) { this.logger.log(`set firstLevel:${newLevel}`); this.levelController.firstLevel = newLevel; } /** * Return the desired start level for the first fragment that will be loaded. * The default value of -1 indicates automatic start level selection. * Setting hls.nextAutoLevel without setting a startLevel will result in * the nextAutoLevel value being used for one fragment load. */ get startLevel() { const startLevel = this.levelController.startLevel; if (startLevel === -1 && this.abrController.forcedAutoLevel > -1) { return this.abrController.forcedAutoLevel; } return startLevel; } /** * set start level (level of first fragment that will be played back) * if not overrided by user, first level appearing in manifest will be used as start level * if -1 : automatic start level selection, playback will start from level matching download bandwidth * (determined from download of first segment) */ set startLevel(newLevel) { this.logger.log(`set startLevel:${newLevel}`); // if not in automatic start level detection, ensure startLevel is greater than minAutoLevel if (newLevel !== -1) { newLevel = Math.max(newLevel, this.minAutoLevel); } this.levelController.startLevel = newLevel; } /** * Whether level capping is enabled. * Default value is set via `config.capLevelToPlayerSize`. */ get capLevelToPlayerSize() { return this.config.capLevelToPlayerSize; } /** * Enables or disables level capping. If disabled after previously enabled, `nextLevelSwitch` will be immediately called. */ set capLevelToPlayerSize(shouldStartCapping) { const newCapLevelToPlayerSize = !!shouldStartCapping; if (newCapLevelToPlayerSize !== this.config.capLevelToPlayerSize) { if (newCapLevelToPlayerSize) { this.capLevelController.startCapping(); // If capping occurs, nextLevelSwitch will happen based on size. } else { this.capLevelController.stopCapping(); this.autoLevelCapping = -1; this.streamController.nextLevelSwitch(); // Now we're uncapped, get the next level asap. } this.config.capLevelToPlayerSize = newCapLevelToPlayerSize; } } /** * Capping/max level value that should be used by automatic level selection algorithm (`ABRController`) */ get autoLevelCapping() { return this._autoLevelCapping; } /** * Returns the current bandwidth estimate in bits per second, when available. Otherwise, `NaN` is returned. */ get bandwidthEstimate() { const { bwEstimator } = this.abrController; if (!bwEstimator) { return NaN; } return bwEstimator.getEstimate(); } set bandwidthEstimate(abrEwmaDefaultEstimate) { this.abrController.resetEstimator(abrEwmaDefaultEstimate); } /** * get time to first byte estimate * @type {number} */ get ttfbEstimate() { const { bwEstimator } = this.abrController; if (!bwEstimator) { return NaN; } return bwEstimator.getEstimateTTFB(); } /** * Capping/max level value that should be used by automatic level selection algorithm (`ABRController`) */ set autoLevelCapping(newLevel) { if (this._autoLevelCapping !== newLevel) { this.logger.log(`set autoLevelCapping:${newLevel}`); this._autoLevelCapping = newLevel; this.levelController.checkMaxAutoUpdated(); } } get maxHdcpLevel() { return this._maxHdcpLevel; } set maxHdcpLevel(value) { if (isHdcpLevel(value) && this._maxHdcpLevel !== value) { this._maxHdcpLevel = value; this.levelController.checkMaxAutoUpdated(); } } /** * True when automatic level selection enabled */ get autoLevelEnabled() { return this.levelController.manualLevel === -1; } /** * Level set manually (if any) */ get manualLevel() { return this.levelController.manualLevel; } /** * min level selectable in auto mode according to config.minAutoBitrate */ get minAutoLevel() { const { levels, config: { minAutoBitrate } } = this; if (!levels) return 0; const len = levels.length; for (let i = 0; i < len; i++) { if (levels[i].maxBitrate >= minAutoBitrate) { return i; } } return 0; } /** * max level selectable in auto mode according to autoLevelCapping */ get maxAutoLevel() { const { levels, autoLevelCapping, maxHdcpLevel } = this; let maxAutoLevel; if (autoLevelCapping === -1 && levels != null && levels.length) { maxAutoLevel = levels.length - 1; } else { maxAutoLevel = autoLevelCapping; } if (maxHdcpLevel) { for (let i = maxAutoLevel; i--;) { const hdcpLevel = levels[i].attrs['HDCP-LEVEL']; if (hdcpLevel && hdcpLevel <= maxHdcpLevel) { return i; } } } return maxAutoLevel; } get firstAutoLevel() { return this.abrController.firstAutoLevel; } /** * next automatically selected quality level */ get nextAutoLevel() { return this.abrController.nextAutoLevel; } /** * this setter is used to force next auto level. * this is useful to force a switch down in auto mode: * in case of load error on level N, hls.js can set nextAutoLevel to N-1 for example) * forced value is valid for one fragment. upon successful frag loading at forced level, * this value will be resetted to -1 by ABR controller. */ set nextAutoLevel(nextLevel) { this.abrController.nextAutoLevel = nextLevel; } /** * get the datetime value relative to media.currentTime for the active level Program Date Time if present */ get playingDate() { return this.streamController.currentProgramDateTime; } get mainForwardBufferInfo() { return this.streamController.getMainFwdBufferInfo(); } /** * Find and select the best matching audio track, making a level switch when a Group change is necessary. * Updates `hls.config.audioPreference`. Returns the selected track, or null when no matching track is found. */ setAudioOption(audioOption) { var _this$audioTrackContr; return (_this$audioTrackContr = this.audioTrackController) == null ? void 0 : _this$audioTrackContr.setAudioOption(audioOption); } /** * Find and select the best matching subtitle track, making a level switch when a Group change is necessary. * Updates `hls.config.subtitlePreference`. Returns the selected track, or null when no matching track is found. */ setSubtitleOption(subtitleOption) { var _this$subtitleTrackCo; (_this$subtitleTrackCo = this.subtitleTrackController) == null ? void 0 : _this$subtitleTrackCo.setSubtitleOption(subtitleOption); return null; } /** * Get the complete list of audio tracks across all media groups */ get allAudioTracks() { const audioTrackController = this.audioTrackController; return audioTrackController ? audioTrackController.allAudioTracks : []; } /** * Get the list of selectable audio tracks */ get audioTracks() { const audioTrackController = this.audioTrackController; return audioTrackController ? audioTrackController.audioTracks : []; } /** * index of the selected audio track (index in audio track lists) */ get audioTrack() { const audioTrackController = this.audioTrackController; return audioTrackController ? audioTrackController.audioTrack : -1; } /** * selects an audio track, based on its index in audio track lists */ set audioTrack(audioTrackId) { const audioTrackController = this.audioTrackController; if (audioTrackController) { audioTrackController.audioTrack = audioTrackId; } } /** * get the complete list of subtitle tracks across all media groups */ get allSubtitleTracks() { const subtitleTrackController = this.subtitleTrackController; return subtitleTrackController ? subtitleTrackController.allSubtitleTracks : []; } /** * get alternate subtitle tracks list from playlist */ get subtitleTracks() { const subtitleTrackController = this.subtitleTrackController; return subtitleTrackController ? subtitleTrackController.subtitleTracks : []; } /** * index of the selected subtitle track (index in subtitle track lists) */ get subtitleTrack() { const subtitleTrackController = this.subtitleTrackController; return subtitleTrackController ? subtitleTrackController.subtitleTrack : -1; } get media() { return this._media; } /** * select an subtitle track, based on its index in subtitle track lists */ set subtitleTrack(subtitleTrackId) { const subtitleTrackController = this.subtitleTrackController; if (subtitleTrackController) { subtitleTrackController.subtitleTrack = subtitleTrackId; } } /** * Whether subtitle display is enabled or not */ get subtitleDisplay() { const subtitleTrackController = this.subtitleTrackController; return subtitleTrackController ? subtitleTrackController.subtitleDisplay : false; } /** * Enable/disable subtitle display rendering */ set subtitleDisplay(value) { const subtitleTrackController = this.subtitleTrackController; if (subtitleTrackController) { subtitleTrackController.subtitleDisplay = value; } } /** * get mode for Low-Latency HLS loading */ get lowLatencyMode() { return this.config.lowLatencyMode; } /** * Enable/disable Low-Latency HLS part playlist and segment loading, and start live streams at playlist PART-HOLD-BACK rather than HOLD-BACK. */ set lowLatencyMode(mode) { this.config.lowLatencyMode = mode; } /** * Position (in seconds) of live sync point (ie edge of live position minus safety delay defined by ```hls.config.liveSyncDuration```) * @returns null prior to loading live Playlist */ get liveSyncPosition() { return this.latencyController.liveSyncPosition; } /** * Estimated position (in seconds) of live edge (ie edge of live playlist plus time sync playlist advanced) * @returns 0 before first playlist is loaded */ get latency() { return this.latencyController.latency; } /** * maximum distance from the edge before the player seeks forward to ```hls.liveSyncPosition``` * configured using ```liveMaxLatencyDurationCount``` (multiple of target duration) or ```liveMaxLatencyDuration``` * @returns 0 before first playlist is loaded */ get maxLatency() { return this.latencyController.maxLatency; } /** * target distance from the edge as calculated by the latency controller */ get targetLatency() { return this.latencyController.targetLatency; } /** * the rate at which the edge of the current live playlist is advancing or 1 if there is none */ get drift() { return this.latencyController.drift; } /** * set to true when startLoad is called before MANIFEST_PARSED event */ get forceStartLoad() { return this.streamController.forceStartLoad; } } Hls.defaultConfig = void 0; var KeySystemFormats = empty.KeySystemFormats; var KeySystems = empty.KeySystems; var SubtitleStreamController = empty.SubtitleStreamController; var TimelineController = empty.TimelineController; export { AbrController, AttrList, Cues as AudioStreamController, Cues as AudioTrackController, BasePlaylistController, BaseSegment, BaseStreamController, BufferController, Cues as CMCDController, CapLevelController, ChunkMetadata, ContentSteeringController, DateRange, Cues as EMEController, ErrorActionFlags, ErrorController, ErrorDetails, ErrorTypes, Events, FPSController, Fragment, Hls, HlsSkip, HlsUrlParameters, KeySystemFormats, KeySystems, Level, LevelDetails, LevelKey, LoadStats, MetadataSchema, NetworkErrorAction, Part, PlaylistLevelType, SubtitleStreamController, Cues as SubtitleTrackController, TimelineController, Hls as default, getMediaSource, isMSESupported, isSupported }; //# sourceMappingURL=hls.light.mjs.map